
Why this book is needed

“I am left with the feeling that all of the sites I have created are 50%
elegance, and 50% nasty kludge.”

This quote from a recent Slashdot1 discussion on PHP development
resonated with the audience. Indeed, as many would attest, a web site
usually starts simple but quickly grows into a complex, convoluted
mess — where you are afraid of making a change for fear of breaking
something else.

Why should a web site so quickly become a nightmare of unmaintain-
able code, visual and semantic inconsistencies, and outright errors
embarrassingly visible to the whole world? Many reasons could be
quoted, from limitations specific to the particular web development
platforms (such as PHP, ASP, or Perl) to fundamental drawbacks of
the “web site as an application” paradigm.

. .

1. www.slashdot.org

Introduction

This book is devoted to one very important way in which the majority
of today’s web sites are broken — and, of course, to the technology
which (if correctly applied) can mend this breakage. The problem I’m
speaking about is the lack of a consistently semantic and media-
independent representation of web site content; the technology that
can help you solve this problem is XML; and the key to applying it
in web development is XSLT transformations.

Say what you mean. XML is no panacea. It won’t magically make
your sites self-maintaining or error-proof. But it will give you a critical
advantage: Just as a good programming language allows you to freely
express your algorithms, XML makes it possible to actually say what
you mean in content markup.

The word content is the key. XML is actually more important for web
development than any programming language — simply because you
can have a web site without a dynamic engine of any kind, but there
cannot exist a web site without content.

In fact, a lot of the approaches in this book apply not only to web sites
but to any XML-based document workflows, such as books or tech-
nical documentation. XML stimulates thinking about content as such,
abstracting it not only from its presentation but from any processing
requirements as well.

What you will find in this book

This is not a general XML book; it is a book on one specific ap-
plication of XML. What you’ll find here is as much XML and XSLT
as is necessary for a sequence of very practical tasks:

4 structuring your web site content into cleanly separated semantic
layers;

5 developing a custom XML markup vocabulary for each layer;

6 automatically validating both markup and structure of content;

introduction

XSLT web developmentxxviii

7 transforming content from source XML to browser-ready HTML
using XSLT (optionally with generation of images and other
non-HTML objects); and

4 integrating the content markup and transformation system with
existing web development frameworks and other software.

Building the backbone. The point of using XML in web design is
to separate content from presentation; the above items cover the com-
plete transition from the former to the latter. Simply put, we focus on
developing the best source markup for your content and programming
the most efficient transformation into your chosen presentation style.

An XML web site may include other components, such as a database,
a dynamic engine, or a maintenance back-end. There is a wide range
of auxiliary tools and architectures compatible with an XML-based
web site. Many of them are mentioned in this book, and a few are
explored in detail (notably Cocoon, Chapter 7). However, the content-
to-presentation assembly line is the backbone of any XML web site
and our main focus of attention in this book.

Usability and portability. In a web development context, the term
usability normally refers to how easy to use a web site is for a visitor.
In this book, however, I would like to redefine this term by focusing
on a different aspect of usability that is too often ignored — usability
of a web site for its developers, authors, editors, and maintainers. With
the Web growing more and more collaborative, this aspect is becom-
ing critical.

Using semantic XML for content markup is already a big step toward
liberating web authors from worrying about things they don’t need to
worry about. But semantic XML is only an idea; how you implement
this idea will seriously affect the “authorability” and “maintainability”
of your site. This is where this book, with its pervasive ideas of sim-
plification, abbreviation, and readability, might be useful.

Another important theme of the book is portability. Again, this term
usually describes a web site’s viewability and functionality across
browsers and platforms. It’s not less important, however, that before

xxixintroduction

introduction

a web site gets to your browser, it must be developed and authored —
often in different environments and on different platforms. We touch
on this server-side aspect of portability with regard to the XML/XSLT
workflow.

Who this book is for

Everyone interested in web development or in practical XML/XSLT
should find this book interesting. It will be especially useful for web
designers, web developers, project managers, as well as webmasters
and web site administrators. Whether you are building a modest per-
sonal home page or a large dynamic site, learning the XML way of
doing things will transform your outlook even if you don’t plan to use
(all of) this book’s techniques.

You need to have a basic knowledge of XML to read and enjoy this
book. For most chapters, understanding of XML syntax and common
XML-related terms2 will be enough, but for Chapter 5 you will want
to know some XSLT and especially XPath. Expert knowledge of
HTML is neither required nor offered. Some familiarity with web
development concepts and jargon might be useful but is not necessary.

How this book is organized

Perhaps you’ve already thumbed through the book, so you might have
noticed that it breaks into three main parts. The first part is composed
mostly of text and diagrams; the second features lots of example
code; the last displays a number of screenshots. This sequence
metaphorically reflects the path that we’ll follow from manipulating
abstract notions, to writing practical markup and code, to launching
and maintaining a final working web site.

. .

2. Excluding the syntax and terminology of XML DTDs which (with a few
exceptions) are intentionally ignored in favor of more powerful and modern
schema languages.

introduction

XSLT web developmentxxx

4 Chapter 1 is mostly theoretical; we’ll spend some time discussing
the basic premises of XML and its applicability to web develop-
ment. It is recommended that you read this chapter carefully, for
its concepts and terminology are used throughout the book. No
real harm will be done, however, if you poke into the book’s code
examples first and return to Chapter 1 later.

The topics of this chapter include the principles behind using
XML with web sites, an overview of relevant XML standards, and
a classification of the possible ways to set up an XML web site.
Special attention is paid to the dynamic web sites and the ap-
proaches to combining XML processing with a dynamic engine.

5 Chapter 2 is dedicated to the foundation of an XML web site —
its source definition. This includes schemas for all document types
used by the web site’s XML source plus all the rules and regula-
tions that may be impossible to express in a schema language but
that the source must satisfy in order to smoothly transform into
a correct web site.

In this chapter, we’ll look at different schema languages and dis-
cuss the implementation options for those parts of the source
definition that a schema cannot handle. We will also examine the
common generic markup constructs, the best approaches to their
schematization, and a number of corresponding pitfalls. For in-
stance, in this chapter you’ll find insights into the eternal “child
elements vs. attributes” dilemma.

6 Chapter 3 is the practical complement to the previous chapter.
Here, we’ll use the approaches of Chapter 2 to mark up some real
web site source documents. Most common elements of web pages,
such as text blocks, headings, links, and images, are considered.
In most cases, existing standardized vocabularies that you can
borrow from are mentioned.

Some important concepts of the book, such as abbreviating ad-
dresses, are introduced in this chapter. This is also the chapter
where markup examples start appearing in large numbers, so if
you prefer to learn by looking at examples, you might want to

xxxiintroduction

introduction

start your reading from this chapter. The last section of the
chapter presents summary examples of a page document, a master
document, and a Schematron schema that validates both types of
documents.

7 Chapter 4 is the first of the two XSLT chapters. It is an introduc-
tion aimed at a developer who has had some experience with
XSLT 1.0. Here, we’ll discuss some of the new stuff that is being
introduced in XSLT 2.0 and XPath 2.0 as well as the existing
XSLT extensions. A detailed analysis is devoted to the important
issue of adapting traditional algorithms to XSLT, which is a
functional language without an assignment operator.

4 Chapter 5 is the core of the book — the practical XSLT chapter
and the largest of all of them. Lots of XSLT code examples show
all aspects of an XML-to-HTML transformation, from setting
up the environment and building the page layout to low-level text
processing. We’ll also revisit our Schematron schema to add some
exciting new checks made possible by XPath 2.0.

This chapter not only uses but extends XSLT. We’ll see how a few
simple Java classes may drastically advance the capabilities of an
XSLT stylesheet. These extensions are used in Chapter 5 for all
kinds of tasks, from generating bitmap images via SVG to batch
processing all page documents of a site. Again, a section with
complete listings of the stylesheet and related bits of code summa-
rizes this chapter.

5 Chapter 6 is where the screenshots are. It is devoted to all kinds
of software that will help you run your XML web site after the
core validation and transformation components are ready. The
focus here is not on specific programs but on classifying the
functionality of XML software and the approaches to various
practical problems.

Sections of this chapter discuss the existing XML authoring
paradigms and the principles of converting other formats into
XML. Also reviewed are various tools and utilities for handling

introduction

XSLT web developmentxxxii

XML, XSLT, and XPath. The last section explores the use of build
tools, such as the make utility, in XML web site projects.

6 Chapter 7 is concerned with integrating the XML/XSLT system
into a web server setup. We’ll briefly discuss using an XSLT
processor as a servlet, but the bulk of this chapter is devoted to
Apache Cocoon, which crowns the chapter and the book. After
learning the principles of building Cocoon web sites, we’ll revisit
our sample web site from previous chapters to see what it takes
to adapt it to run under Cocoon.

Typographic conventions

Designing your own book is a mindbending experience (something
that songwriters who author both music and lyrics would probably
agree with). In my book, I tried to make the text look rich but consis-
tent, pleasantly dense but varied. Some of the solutions that I came
up with may deserve a few words.

Running in from aside. Three levels of numbered headings are used
within each chapter. In addition, unnumbered bold run-in headings
are often used (as in this paragraph) to break the text into even smaller,
manageable pieces.

Semantically, the run-ins are closer to margin notes than headings;
usually their goal is not to state the subject but to provide a remark,
an aside, a metaphor related to the topic of discussion. Hopefully these
run-in headings are memorable enough to serve as landmarks facilitat-
ing navigation.

Small but not least. Some paragraphs, with or without run-in headings,
are set in a smaller type. They present material that may be skipped in the
first reading without any damage to understanding. You can treat the smaller-
type fragments as extended footnotes or sidebars.

Cross-references. Bold gray numbers (such as 3.9) refer to numbered
sections of the book. The running headers and footers should make

xxxiiiintroduction

introduction

it easy to find the referenced sections; however, for references that
jump especially far, page numbers are also provided.

Syntax coloring without colors. Unlike most computer books with
code listings, this one makes use of a concept that has long been
commonplace in text editors: syntax coloring. Of course, a black-and-
white book page is not really capable of color (except for shades of
gray), but instead it can freely use font faces that usually look nicer
on paper than on a computer screen. Thus, I have attempted to
make code in the book at least as readable as it is in a good text
editor by consistently “coloring” syntactic constructions with different
font faces.

Essential URLs. All web addresses are given in footnotes in an abbreviated
form without http://, index.html, or trailing slashes.

Slash what? I use forward slashes (/) and not backslashes (\) as directory
separators for both Windows and Unix (the latter including Mac OS X). The
rationale is simple: Forward slashes are standard on Unix and in URLs, and
most Windows tools understand both kinds of slashes anyway.

Notes on terminology

The terminology used in the book is basically standard. Sometimes I
simplify the accepted terminology in order to make it more accessible,
or I use my own terms instead of those used in authoritative sources;
all such cases are noted. Some important terms that may appear con-
fusing or are often misunderstood are commented on below.

Element type, element, or tag? When speaking of XML, many
people fail to differentiate between an element and an element type.
Sometimes, a tag is also confused with an element. For example,
this fragment

<foo> <foo/> </foo>

has three tags but two elements belonging to one element type (and
having one element type name, foo). Note that an element cannot have
a name — only an element type can; still, we can refer to an element
by its element type name if we identify which of the elements of

introduction

XSLT web developmentxxxiv

this type is in question (for example, “in the first foo element”).
In the XSLT context, an element from the XSLT namespace
(e.g., xsl:template) is often called an instruction.

Stylesheet or transformation? The word stylesheet may be mislead-
ing when applied to an XSLT program that transforms one XML
document into another; the word transformation would be more ap-
propriate. (Note that xsl:stylesheet and xsl:transform are both
acceptable as the root element of an XSLT stylesheet.) Still, backed
by tradition, I mostly use “stylesheet” or, sometimes, “transformation
stylesheet” when referring to the XSLT component of a web site setup.

Stylesheet or style sheet? To avoid confusion with XSLT stylesheets,
CSS style sheets are always spelled thus; this is conformant with both
XSLT and CSS specifications.

Document, instance, page, or file? Document is a generic term, but
I use it only to refer to XML documents, while HTML documents
are usually called pages. Instance is another term often used in XML
(it refers to a document being an instance of its document type), but
I will stick to “documents” as more familiar. Neither “document” nor
“instance” are synonymous with file; a document is not necessarily
stored in a file at all. Therefore, “file” is used only when real files,
handled by the operating system, are involved.

Document element or root element? The XSLT specification uses
the term document element with the meaning of root element. I use the
latter term as more descriptive, even though it may be slightly confus-
ing from an XSLT viewpoint because the “root node” of XPath (/)
is the parent of the node corresponding to the “root element”
(e.g., /page).

XML Schema or XSDL? XML Schema is the W3C recommendation
for a schema language. Unfortunately, its name is way too generic for
its own good. Even the capital S in “Schema” cannot prevent confu-
sion when you have to speak about XML Schema among other schema
languages for XML, and especially when you refer to specific schemas
written in that language. So, in conformance with other books in
this series, I use the abbreviation XSDL (XML Schema Definition

xxxvintroduction

introduction

Language) to refer to the language itself and XSDL schemas to refer to
specific schema definitions.

Yet another abbreviation you may have seen used for the same language is
WXS, standing for W3C XML Schema.

URI or URL? This one may confuse even experts at times. URI is a
more general term than URL, but the difference between them — i.e.,
those URIs that are not URLs — is so insignificant that for practical
purposes, these terms are interchangeable. See RFC 23963 for more
details.

HTML or XHTML? Since this book views HTML mostly as a result
of an XSLT transformation, what I mean when speaking of HTML
may actually be either HTML or XHTML (any versions). With XSLT,
you can output both formats, and modern browsers do not have any
problems with either. When there’s a meaningful distinction between
HTML and XHTML, this is noted.

“Data is” or “data are”? Formally, data is the plural of datum. In modern
English, however, using “data” as singular is more common, as evidenced by
statistics reported by Internet search engines. In this book “data” is used
as singular.

How this book was created

“Practice what you preach.” “Eat your own dogfood.” One way or the
other, this book itself uses many of the techniques it describes.

The text of the book was written directly in XML using a custom
schema inspired by HTML, DocBook, and Charles F. Goldfarb’s DTD
that is used by many books in this Definitive XML Series. An XSLT
transformation stylesheet written by Alina Kirsanova translated the
source into XSL-FO and performed all necessary processing, such as
importing code examples (stored separately), special character substi-
tutions (5.4.2.2), compiling the Index and TOC, and generating
cross-references.

. .

3. www.ietf.org/rfc/rfc2396.txt

introduction

XSLT web developmentxxxvi

The design for the book was also created by me, with elements
borrowed from the other books in the series that we worked on using
the same XML/XSLT/XSL-FO technology. The final rendering of
XSL-FO into PDF was done by XEP4 from RenderX.

Code examples (in a total of 11 different formats and XML vocabular-
ies) were parsed by XEmacs + PSGML (6.1.1.2) with custom syntax
coloring regexps and then saved into XHTML using htmlize.el5 by
Hrvoje Nikšić. The resulting files were then translated by a simple
stylesheet into a vocabulary understood by the book’s main transfor-
mation stylesheet.

Acknowledgments

This book could be much worse (all the way down to the point of
nonexistence) without the help of the following people to whom I am
deeply indebted:

Charles F. Goldfarb, for inventing SGML before I was born, for per-
suading me that the book project is realistic, and for a detailed review
of the manuscript.

Mark Taub, for managing the project and tirelessly pushing me ahead
despite my tendency to procrastinate.

G. Ken Holman, for pointing out some finer points of XSLT and
catching many ambiguities and outright errors.

Daniel Smith, for useful comments on writing style and presentation
of the material.

Vadim Penzin, for useful discussions of database terminology.

Ilya Oussov, for help with Java extension functions.

Alina, for everything.

. .

4. xep.xattic.com

5. fly.srk.fer.hr/~hniksic/emacs/htmlize.el

xxxviiintroduction

introduction

Origins of this book

Perhaps the best thing about this book is that it is based on, and in
fact was born out of, the author’s real-world projects. Since 1998,
Dmitry Kirsanov Studio6 has created web sites for customers around
the world. In recent years all the web sites we do are based on XML
and XSLT. This book is a snapshot of our current XML experience.

I am a technical writer, freelance XML/XSLT expert, and graphic de-
signer. The book also draws on the magazine and online articles and
books I’ve written. Among these are Dmitry’s Design Lab,7 a monthly
column (1997–1999) devoted to exploring creative as well as technical
issues pertaining to web design, and Dmitry Kirsanov’s Web Design
Book8 (1999, in Russian), which has become one of the most influen-
tial Russian-language books on web design.

Feedback

I will be grateful for comments, corrections, criticism, or any other
form of feedback on this book and its ideas and approaches. Please
write me at dmitry@kirsanov.com.9

An online companion for this book is available.10 It provides the book’s
errata, the complete source code of the examples, and other material.

. .

6. www.kirsanov.com

7. www.webreference.com/dlab

8. www.kirsanov.com/web.design

9. I’m relieved that I can, for once, give my email address in plain text — fortunately,
spam bots are unable to spider books (yet?) . . . the only downside is that it’s not
clickable.
10. authors.phptr.com/Kirsanov and www.kirsanov.com/xsltwd

introduction

XSLT web developmentxxxviii

