
3
Elements
of a web site

River and bridge and street and square

Lay mine, as much at my beck and call,

Through the live translucent bath of air,

As the sights in a magic crystal ball.

ROBERT BROWNING , Old Pictures in Florence

This chapter is a practical complement for Chapter 2, “The source
definition.” Having discussed the ins and outs of building a com-
prehensive and useful source definition, we’ll now look at how these
rules can be applied to real-world source XML documents of a typical
web site.

I cannot claim to cover everything: Your web site may well contain
unique elements that won’t fit common schemes. Here, only the most
general and frequently used constructs are covered, and the approaches
described in this chapter may not be optimal for all situations. Many
examples are given, but rather than copy them over, try to use the
reasoning behind these examples to analyze your own constraints
and requirements.

The first part of the chapter deals with markup constructs commonly
used in page documents, including headings, paragraphs and para-
graph-like elements, links, images and other non-XML objects,
tables, and forms. Then we will analyze the master document (3.9)
to find out what data it needs to store and what is the best XML

3
Elements of a web site

representation for this data. The last section (3.10) presents complete
summary examples of a page document, a master document, and a
Schematron schema to validate them.

Page documents: top-level structures3.1

In this and subsequent sections, we look at the informational core of
a web page, stored in its own source document (page document).
Peripheral components such as navigation, parameters of the site en-
vironment, and metadata are stored in the master document, the subject
of 3.9.

Page metadata3.1.1

Every XML document has a root element, and since we’re talking
about page documents here, there’s no reason not to call this element
page. Its attributes and children are the natural place to store the
page’s metadata.

In addition to its primary content, each page document includes
certain metadata. Some of it may end up as a visible part of the web
page, some may be hidden in HTML metadata constructs (keywords
and descriptions in meta elements), some may be used during transfor-
mation but not included in the resulting HTML code, and some may
not be used at all except for reference or source annotation purposes.
Common examples of metadata include page creation date, change
log, author(s) and editor(s), copyright and licensing information, and
the language of the page.

Note that only information specific to this particular page must be stored in
it; if some metadata bits are shared by more than one page, their proper place
is in the master document (3.9) and not in any of the page documents.

Page ID. The most important piece of metadata is the page’s unique
identifier used to resolve internal links (3.5.3). However, we cannot
store this identifier in the page itself, or we’ll have a catch-22 situation:
We can get from the id to the page location, but to obtain the id we

page documents: top-level structures3.1

XSLT web development92

must access the page — that is, we must already know its location.
Because of this, the proper place for the ids of all pages is in the site’s
master document.

Page coordinates. The same applies to the information on the posi-
tion occupied by this page in the site’s hierarchy. As we’ll see later
(3.9.1.1), the branch of the site’s tree that this page is a leaf of is most
naturally deduced from the site directory in the master document.
Duplicating this information in the page document itself is unneces-
sary and prone to errors.

Everything else. Any other page metadata is normally stored in the
page document. Simple values can be stored in attributes of the page’s
root element. More complex constructs that require their own ele-
ments can be placed either directly under the root or inside an umbrel-
la parent element (e.g., metadata) that is a child of the root element.

Existing vocabularies. RDF (1.1.5), besides being the cornerstone
of the Semantic Web, can be used as a powerful tool for representing
metadata in the traditional Web. It allows you to use standardized
descriptors for common values such as author and date, but you can
just as well define your own semantics for your unique metadata.

Sections and blocks3.1.2

You’ll likely need some intermediate structural layers between the
root element, page, and text markup constructs such as paragraphs
and headings.

Sections or blocks? The traditional document hierarchy — sections,
subsections, subsubsections, and so on — is not often seen on the
Web. Instead, information is more commonly broken into relatively
small blocks with few or no hierarchical relations between them. Dif-
ferent sites may call these blocks “stories,” “blurbs,” “columns,”
“modules,” “writeups,” and myriad other names.

Among these names, one which appears to be the most intuitive is the
one you should use for your block construct’s element type name.
Contentwise, a block is a unit with mostly fixed structure that may

93chapter 3 elements of a web site

3.1.2sections and blocks: sections or blocks?

include both obligatory (e.g., heading and body) and optional (e.g.,
icon, heading links, author byline) components in both parallel and
sequential (2.3.7) arrangements. Here’s an example:

<block id="unique" icon="block_icon" type="story">
 <head link="address">Block heading</head>
 <subhead>Optional block subheading</subhead>
 <p>And here goes a paragraph of text.</p>
 <p>Possibly one more paragraph.</p>
 <author>An optional author byline</author>
</block>

Block types. It is likely that you will have more than one type of
block construct — for example, front page news blocks, subpage body
blocks, and ad blocks. In the simplest case, everything on the page
can be treated as one big block, so the page’s root element can be
considered the root element of a block.

Different types of blocks will likely have many common structural
features — in part because they all belong to one site with its common
information architecture and visual design. Only if different types of
blocks have clearly distinct structures can you use different element
types for them; otherwise it is best to use the same generic element
type (e.g., block) with different values of the type attribute. This
provides two major benefits:

4 Your validation code will be simpler to write and maintain.

5 Management of orthogonal content (2.1.2.2) will be much easier
to implement — for example, you may be able to reuse blocks
from regular pages as orthogonals on other pages, or turn docu-
ments storing orthogonal content into regular pages.

In general, analogous but different structures should only differ by a
minimum number of obvious features; avoid random, meaningless
differences.

page documents: top-level structures3.1

XSLT web development94

Headings3.2

Brief highlighted text fragments that preface or summarize longer
pieces of text are very common on web pages. A heading may apply
to the entire page, a section within the page, or even a single sentence
or link — but it must apply to something, for a heading only exists
as a member of a “head and body” pair.

Element type names3.2.1

Look up the number. HTML has long used the h1 to h6 element
types for six levels of headings. You can borrow these names, or you
can make them less cryptic by using head1, head2, and so on. In any
case, this approach only works if you really need several levels of
headings and if these levels are free of any additional semantics —
that is, if you can more or less freely move a branch of your headings
tree upward or downward in the hierarchy.

If this is not true — for example, if your third-level headings are res-
erved specifically for sidebars that cannot be promoted to second-level
sections — then the number-based naming scheme is not a good idea
at all. Imagine that one day you need to add sections inside a side-
bar — this will look ugly if your sidebar headings are marked up, say,
as h4, while sections are h2.

Ask my parent who I am. It is vastly more convenient to use
some descriptive names, such as chapter-head, section-head, or
sidebar-head. An even better approach is to take advantage of the
“head and body” duality mentioned above. If you’ve defined different
element types for the complete structural units (section, sidebar,
etc.), then the single head element type can be used for headings at
any level:

95chapter 3 elements of a web site

3.2.1element type names: ask my parent who I am

<section>
 <head>This is a section heading</head>
 ...
 <subsection>
 <head>And this is a subsection heading</head>
 ...
 </subsection>
</section>

This scheme is intuitive, easy to remember, and therefore easy to use.
Even though there is only one heading element type, XSLT or
Schematron will have no problem determining the role of each
particular heading by checking its parent element. At the same time,
implementing processing that is common to all headings is very
straightforward with this approach.

XHTML 2.01 implements a similar scheme except that its element type for a
heading, h, is always a child of a section (although sections can nest). This
is understandable — XHTML cannot realistically cover all possible kinds of
structural units that might require headings. On the other hand, this brings
us back to an “anonymous” naming scheme that is only slightly better than
the old h1...h6: Now you can easily move sections around with their head-
ings, but still no useful semantics is attached to each heading. You can,
however, use the CSS class attribute to designate exactly what kind of a
heading or section this is.

Attributes3.2.2

The next question is, what is the auxiliary information to be stored
with your headings?2 In most cases, the plain text of the heading itself
is sufficient, but there are exceptions. For example, a heading usually
has a unique (either within the page or, more usefully, within the entire
site) id attribute used in cross-references or hyperlinks to this section
from elsewhere.

. .

1. www.w3.org/TR/2003/WD-xhtml2-20030131/

2. Formatting attributes such as font, color, or numbering style are out of the ques-
tion — the whole point of semantic XML is that these must be abstracted away.

headings3.2

XSLT web development96

In fact, a typical reference is supposed to refer to the section (or other
structural unit) to which the heading belongs, not to the heading itself.
Still, most authors prefer to use headings for linking, partially due to
the HTML inertia (there are no sections in today’s HTML) and
partially because this allows them to more easily reuse the text of the
heading in the textual part of the link.

For example, if your heading is marked up as

<head id="attrib">Attributes</head>

and you have a reference to it from somewhere, written as

...see <link to="attrib"/> for more on this.

this can be easily transformed into

...see 2.1, "Attributes" for more on this.

in plain text, or to

...see 2.1, Attributes for more on this.

in HTML (here, “2.1” comes from an automatic count of preceding
and ancestor sections). On the other hand, given that XSLT can easily
traverse from a heading element to its parent, there’s no real reason to
use headings for linking in XSLT-based projects. The same link ren-
dering could just as well be obtained from

<section id="attrib">
 <head>Attributes</head>
 ...
</section>

which looks less tautological and better reflects the fact that both the
head and the id are properties of the section.

If necessary for your site’s design, you may need to store a reference
to a graphic file for each heading (see 3.6 for a discussion of image
references), but only if the correspondence between headings and im-
ages is not automatic. The image may be used, for example, as a
background or an icon-like visual alongside the heading.

97chapter 3 elements of a web site

3.2.2attributes

Children3.2.3

The question of what children to allow within headings boils down
to the question of how far beyond plain text you are willing to go.
Would you need textual emphasis within headings? What about links?
The laziest approach is to allow everything that is allowed within a
paragraph of text — and it will work fine in most cases. Only if you
think you may encounter problems with complex markup in headings
and want to guard against them, might a different content model for
headings be necessary.

Depending on your requirements, other children may be necessary
for heading elements. For example, you may want to store the same
heading in two or more languages, with the stylesheet selecting one
of the languages for presentation depending on a global language pa-
rameter (see also 2.3.5).

You may also want to keep both full and abridged versions of a heading. For
example, newspapers often use a specific abbreviated English syntax for their
headlines (as in U.S. Patriot Act attacked as threat to freedom), but for the
purposes of automatic indexing and natural language processing, the fully
grammatical version of the same heading might be required (The U.S. Patriot
Act was attacked as a threat to freedom).

Web page title3.2.4

A special kind of a heading specific to HTML documents is the title
of a page, normally displayed in the title bar of a web browser window
as well as in bookmarks or search results listing this page. Even though,
as a general rule, your target vocabulary must not influence your se-
mantic source vocabulary, you should plan ahead as to what source
element(s) will be transformed into the web page title.

If each of your pages has a visible on-page heading that applies to the
entire page, it is natural to duplicate it as a web page title. Otherwise,
it is always a good idea to provide a heading for any sufficiently large
information unit. Even if in your target rendition this heading will

headings3.2

XSLT web development98

only be used for a peripheral element such as page title or not used at
all, the very act of christening a piece of data disciplines your thinking
and serves as an additional checkpoint to ensure the consistency
of your source’s information architecture. Besides, the title may
turn out to be more important for other renditions of the same
source document.

Multistage titles. A web page title is often used for orientation within the
site. A sequence of parent sections’ headings, culminating in the name of the
entire site, may be appended or prepended to the current page’s title
(e.g., “Foobar Corporation — Products — Foobar Plus”). Such a hierarchical
title may be informative and useful, especially with deep site trees (even if the
same information is duplicated on the page itself). Of course, it is the
stylesheet that builds such a compound title, while the XML source of each
page only provides that page’s unique part of the title.

Paragraphs3.3

A paragraph is a sequence of sentences that traditionally represents a
complete, single thought. Today, however, paragraphs are often used
for structuring the text flow visually, rather than for organizing the
flow of ideas within it. Online, paragraphs tend to be smaller than in
print, and other means of text organization (such as blocks, 3.1.2) may
make traditional paragraphs less common.

Still, whenever you have a container for more than just a small bit of
text, your schema should permit inserting one or more intermediate
paragraph elements between this container and its text. In most cases,
this intermediate level may be optional; for example, your block ele-
ments could be allowed to contain either direct text content (for short
fragments less than a paragraph) or a sequence of paragraph elements
(for longer pieces of text). This approach adds a degree of laxity to
your schema but is very convenient in daily markup practice.

As for the element type name, there is no reason not to use HTML’s
p, although para would be more appropriate for users who might find
p too cryptic.

99chapter 3 elements of a web site

3.3paragraphs

Lists3.3.1

Lists are a special construct that is closely related to paragraphs. Two
common types of lists offered by HTML are unordered (bulleted) and
ordered (numbered), differing in how the items in the list are adorned.
For our XML markup, we could borrow HTML’s model, with a parent
element (e.g., ordered-list) enveloping the entire list and children
elements (e.g., item) marking up individual items.

The only possible ambiguity with regard to list markup is how to
correlate list items with paragraphs. Often, each list item is a para-
graph, so you may be tempted to consider paragraph elements
redundant and disallow them from list markup completely. However,
as soon as you run into an item of two or more paragraphs, you may
regret this decision. I recommend using the convention discussed in
the last section: Allow both paragraphs and direct text content within
list item elements.

In fact, this is what is implemented by HTML 4; its li element can contain
both inline and block content (i.e., both text children and paragraph elements,
among others).

Paragraphs as link targets3.3.2

Most links refer to entire web pages, but sometimes you need to pin-
point a particular location within a page. In HTML, you can make a
link target from as small a piece of text as you like, down to a single
sentence or word (by enclosing it in an a element with the name at-
tribute).3 In most graphic browsers, however, the only visible result of
jumping to an in-page link is the page being scrolled down so that the
linked point is at the top edge of the window.

This means that — unless your linked sentence happens to start at
the beginning of a screen line — the visible portion of the newly
loaded page starts in mid-sentence. This result is quite confusing and

. .

3. A linked element is often called an anchor, and HTML uses this term for both
the source of the link (source anchor) and its destination (destination anchor); hence
the use of the a element for both ends of a link.

paragraphs3.3

XSLT web development100

makes it nearly impossible to guess what exactly the link referred to.
For this reason alone, it is advisable to only allow anchoring links to
block-level elements, including paragraphs.

With XML, it is easy to enforce that rule because you most likely won’t
have any target enveloping element (like a in HTML). What you need
instead is an attribute, only applicable to block-level elements, that
turns its element into a link target. It often makes sense to reuse the
almost-standard id attribute for this purpose (in addition to its nu-
merous other uses); it won’t do any harm if some of the elements with
ids will create HTML link targets but will never be linked to.

Displayed material3.3.3

Sometimes, you’ll need to present an object that breaks the paragraph
flow, but doesn’t necessarily start a new paragraph. Often, this is a
mathematical formula or a programming code fragment that must
start on a new line.

Such a piece of displayed material is a block-level element from an
HTML perspective; semantically, however, it is often an inseparable
part of an adjacent paragraph containing the introductory or explana-
tory text for this displayed item. Therefore, it makes sense to allow
the displayed material elements to be used only as children of para-
graph elements.

Text markup3.4

The “HT” in HTML stands for HyperText, and the early historical
Web was very much textual. Despite all the graphic and multimedia
advances of recent years, this textual foundation has not eroded. The
advance of XML has, if anything, only strengthened it.

Any text markup language must provide a sufficient inventory of
markup constructs for in-flow text fragments that for some reason
must be differentiated from their context. Examples of such fragments
include emphasized words or phrases, names or identifiers, quotes,
and foreign language citations.

101chapter 3 elements of a web site

3.4text markup

Block and inline elements. HTML (as well as other presentation-
oriented vocabularies, for instance XSL-FO) differentiates between
block-level and inline-level objects. This distinction has to do mostly
with visual formatting, as block-level elements are supposed to be
stacked vertically, while inline elements are part of the horizontal flow
of text.4 Therefore, it is not really relevant for your semantic XML
markup, which must reflect content structure, not formatting. Still,
since HTML is your primary target format, the block/inline distinc-
tion may sometimes have repercussions for your source definition.

Thus, it may be difficult to handle situations where a source element that
normally transforms into an inline-level target element has to apply to a
larger fragment of a document (3.4.3). From the XSLT viewpoint
(4.5.1), block-level elements are more often generated by pull-style trunk
templates, while inline-level elements are the exclusive domain of push-style
branch templates.

Existing vocabularies. DocBook5 is an established standard dating
from 1991 that is used mostly for technical books and documentation.
It may well be the most widely used XML vocabulary after XHTML;
when somebody tells you, “My documents are in XML,” chances are
it’s actually DocBook. Software support for this vocabulary is also
quite good.

DocBook is vast but not too deep, so it is simple to learn despite its
large number of element types (epigraphs, bibliographies, program-
ming code, glossaries, and so on). If you don’t understand what a
particular element type is supposed to do, probably you don’t need it
(yet). For those constructs you do need, however, DocBook may be a
rich source of text markup and structuring wisdom.

TEI6 (Text Encoding Initiative) is an older and bigger beast, developed
for markup of all kinds of scientific and humanities texts. Compared
to DocBook, it is focused more on low-level text markup than on
high-level book structures. The TEI DTD offers many modules
that cover everything from verse to graph theory, so it is highly
. .

4. In Western writing systems, of course.
5. www.oasis-open.org/specs/docbook.shtml

6. www.tei-c.org

text markup3.4

XSLT web development102

recommended if you need to mark up specialized texts. The TEI
Guidelines7 is a very comprehensive and detailed guidebook explaining
the use of the TEI DTD as well as many finer points of marking up
complex text constructs.

Mark up the meaning3.4.1

Your source XML must be semantic; that is, it must reflect the mean-
ing of text-level constructs, not their presentation. The em and i ele-
ment types, both present in HTML, provide a canonic illustration of
this principle. While an i element dictates using an italic face in visual
media, an em only designates an emphasis, which is a semantic concept
rendered differently in different media. For example, a fragment of
text inside em can be set in italic in a graphic browser, but it can also
be highlighted in a text-mode browser or read aloud emphatically by
a speech browser.

Modern HTML deprecates i and other presentation-oriented element
types; instead, you are supposed to use appropriate semantic element
types such as em, possibly in combination with CSS. In your XML
source, however, deprecating anything is not an option — you have
to make sure that with your schema, no presentation-oriented markup
is possible at all. Formatting hints (3.6.2) can only be used in your
XML when absolutely unavoidable.

Rich markup3.4.2

The same visible formatting may result from different source markup.
For example, you may use the same italic font face for both emphasis
and citations, but they must be marked up differently in your source.
What only a human reader can distinguish in the formatted result
should, ideally, be automatically distinguishable in the source.

In general, semantic markup in the source should be richer and more
detailed than the resulting HTML markup after transformation. For
example, it is often a good idea to use special element types to mark

. .

7. www.tei-c.org/P4X/

103chapter 3 elements of a web site

3.4.2rich markup

up all dates, person names, or company names in your source, even
though in the resulting web pages they are not formatted in any
special way.

Why mark up what you don’t need right here and now? Because your
XML source is more than just an undeveloped (as in “undeveloped
film”) version of the web site. Rather, it is the start of a project that
will keep growing and changing, sprouting new connections and ren-
ditions over time. For example, you may want to reuse your web site
material in PDF brochures, interactive CDs, archival and search ap-
plications, and more.

This means that your XML source must be able to serve as the seman-
tic foundation not only for your current site but also for everything
it can potentially become. You may not need any extra markup right
now, but it may come in very handy when you extend your site or
reuse the source documents for anything beyond the web site pages.

Imagine that one day you need to convert all dates on your site from
one format to another (e.g., from MM/DD/YY to DD/MM/YY). Dealing
with dates scattered in the text is so much easier if all of them are
marked up consistently — for example,

... which happened on
<date><month>09</month><day>04</day><year>2003</year></date>.

instead of simply

... which happened on 09/04/2003.

With rich markup, you can change dates’ rendition (e.g., reorder date
components or use a different separator character) without touching
the source at all, simply by modifying the stylesheet.

On another occasion, you may decide to paint all company names (or
only your own company’s name) green on your web pages. Or, you
may find it a good idea to automatically compile an index of all per-
sons’ names mentioned on your site. All of these tasks are only possible
if your source XML has these elements consistently and unambiguous-
ly marked up.

text markup3.4

XSLT web development104

The need for rich text markup obviously depends on the quality, value,
and planned longevity of your material. You don’t need rich markup
for short-lived stuff, but if you want your material to remain useful
in the long term, you should always try to think in terms of “what
markup is perfect for this content” rather than “what markup is suffi-
cient for the task at hand.” Examples of long-lived or otherwise valu-
able content include standards, specifications, historical texts, etc.

Existing vocabularies. As an example (and a good source of ideas),
consider NITF8 (News Industry Text Format), which is a standard
vocabulary for rich markup of news stories. Only a necessary mini-
mum of NITF markup may be used in a story that goes directly to
press; however, for exchange, syndication, or archival use, a complete
enriched NITF markup is required. A properly prepared NITF news
story uses rich markup to answer questions such as who the story is
about, when and where the described event occurred, and even why it
is considered newsworthy by the story author.

Transcending levels3.4.3

The text elements we’ve discussed in this section would be termed
inline in HTML, meaning they are only allowed within block elements
such as paragraphs. However, this limitation does not always make
sense. For example, a rich markup element such as emphasis may need
to be applied to more than one complete paragraph.

Usually, this is an indication that these paragraphs constitute some
logical entity, such as a quotation, which (rather than the emphasis
itself) you need to mark up. However, there may be situations where
no such element exists, but inline text markup still has to spread across
one or more block elements. What are we to do in such cases?

Inserting a separate inline markup element within each paragraph is
the least elegant solution:

. .

8. www.nitf.org

105chapter 3 elements of a web site

3.4.3transcending levels

<p>This is the first paragraph using emphasis throughout.</p>
<p>And this is the second emphasized paragraph.</p>

This leads to unnecessary duplication of markup, poor maintainability,
and just plain ugliness. This is the only option, however, if your em-
phasis spans one paragraph and a half.

The simplest approach is to just do away with the inline/block distinc-
tion and allow any text markup to be applied at any level of the hier-
archy, both below and above the paragraph level. This will allow you
to enclose all affected paragraphs into a common parent element
specifying emphasis:

<p>This is the first paragraph using emphasis throughout.</p>
<p>And this is the second emphasized paragraph. Note that we can use
nested emphasis.</p>

This might make sense, especially in contexts where you want to allow
both paragraphs and short non-paragraph text fragments (3.3). The
problem with this approach is that it blurs your hierarchy of element
types, thereby making your documents harder to maintain and more
prone to errors.

It might be argued, on the other hand, that the emphasis spanning
one or more paragraphs is semantically different from the emphasis
that spans one or more words. Therefore, they could use different
element types:

<emphasis>
<p>This is the first paragraph using emphasis throughout.</p>
<p>And this is the second emphasized paragraph. Note that we can use
nested emphasis, but this time it is a different element
type for the inline level.</p>
</emphasis>

If the paragraph-level emphasis is semantically connected with the
paragraph element, you can instead add an attribute to those para-
graphs that fall within its scope:

text markup3.4

XSLT web development106

<p type="emphasis">This is the first paragraph using emphasis
throughout.</p>
<p type="emphasis">And this is the second emphasized paragraph.
Again, nested emphasis is possible.</p>

Among these options, there is perhaps no single winner suitable for
all situations. Your choice will depend on the semantics of the element
in question, the frequency of its use at inline and block levels, and the
possible connections between its semantics and that of the standard
block-level element (paragraph).

Nested markup3.4.4

Another issue with text markup is whether nesting elements of one
type is to be allowed. Presentation-oriented markup never uses, for
instance, i within i — but for semantic markup, a similar structure
may be meaningful. Thus, emphasis within emphasis or a quote
within a quote are both perfectly valid semantically, even though in
an HTML rendition, nesting of the corresponding formatting ele-
ments may have no visible effect.

Therefore, to properly transform nested semantic markup, you must
use different formatting depending on the nesting level of the semantic
element. For example, if you use italic face for emphasis, nested em-
phasis can be rendered either as regular face (“toggle” approach, where
you switch between regular and italic faces for each new nesting level)
or as bold italic face (“additive” approach, in which the italic rendition
of the parent is augmented by the bold formatting of the child).

Links3.5

A hyperlink is a very rich concept, even though its implementation
in HTML is rather primitive. Basically, an HTML link consists of
two parts: the address that tells the browser where to go and the link
element itself that (with its attributes and children) defines the link’s
presentation and behavior. However, in HTML, all possible address
types are limited to a single syntax (URI), and all possible link types

107chapter 3 elements of a web site

3.5links

are served by one element type (a) with a limited set of attributes.
Let’s see how we can improve this scheme.

Note that this section only covers inline links that are part of the body of a
page and thus need to be specified in the page’s XML source. Navigational
links, created by the stylesheet based on the master document data, are dis-
cussed in 3.9.1.1.

Elements or attributes?3.5.1

When deciding how to cast your linking semantics into XML con-
structs, it is natural to reuse the HTML approach with a link consist-
ing of an element (signaling the link) and its attributes (providing the
address and other link properties). For example, you might write

This was <link address="address">reviewed</link> elsewhere.

However, this only looks good when you’re linking text fragments
within a text flow. As soon as you have a separate element representing
some object that may have a link property (among others), it is much
more convenient to designate the link by an extra attribute of that el-
ement rather than a wrapper element. For example, it is easier to create
a linked image like this:

<image src="button" link="address"/>

compared to the HTML-inspired approach:

<link address="address"><image src="button"/></link>

Not only the address but other properties of a link as well (such as its
title, behavior, or classification) might similarly attach as attributes to
an element that represents a nontextual link.

So, we see that it is natural to express linking semantics via a set of
attributes that may apply to many different elements (or even to any
element at all) instead of an element type with its own fixed attributes.
This is because a link is most often an attribute of some object rather
than an object in itself. This approach was implemented in W3C’s

links3.5

XSLT web development108

XLink standard,9 and you may consider incorporating XLink into
your source definition for link markup (however, please read the rest
of 3.5 for other possible link properties, not all of which are supported
by XLink).

For in-flow textual links, you still need a generic linking element type
(such as link in the example above) that only serves as a markup
container for the same set of linking attributes. Most schema languages
have no problem defining a separate set of attributes that can be used
in different element types.

Link types3.5.2

Along with the href attribute with the link’s URI, an a element in
HTML may provide a target attribute for specifying the target win-
dow or frame for the linked resource. However, just as you can add
attributes with JavaScript code to program various aspects of the link’s
behavior (e.g., actions performed when the link is activated), your
source XML may also need to provide link properties other than
the address.

This does not mean, of course, that you’ll have to embed JavaScript
into your XML source. As with any other data, what you need to do
first is develop a classification of all possible types of link attributes or
behaviors, without detailing their implementation. As soon as you
have such a classification, it’s easy to coin an appropriate attribute and
define the vocabulary of allowed values for it.

Categorizing links. For example, analysis may reveal that your links
fall into one of the following categories:

4 internal links (links to other pages within the site);

5 external links (links to other sites);

6 dictionary links (links to a script on an online dictionary site
providing definitions for linked words); and

. .

9. www.w3.org/TR/xlink/

109chapter 3 elements of a web site

3.5.2link types: categorizing links

7 thumbnail links (thumbnails linked to pop-up windows with
larger versions of images or pages).

Both thumbnail links and dictionary links may be either internal or
external. However, they need to be classified separately because of
their special role on the pages, resulting in different formatting and
behavior. On the other hand, you may not be planning any formatting
or behavior differences between internal and external links, but sepa-
rating them into different types is still a good idea because it is a nat-
ural classification and because this lets you make your address abbrevi-
ations (discussed in 3.5.3) more logical.

Classifier attributes. To differentiate these link types, we could add
a classifier attribute, e.g. linktype, specifying the type of the link:

...available on the <link linktype="external"
link="www.kirsanov.com/te/">original site</link> and
<link linktype="internal" link="mirror/te">mirrored here</link>.

This approach works both with standalone link elements and with
any other elements that may need to use these linking attributes (e.g.,
image). Note that we used linktype rather than type and link rather
than address for the attribute names so that the common prefix, link,
will help you keep track of these attributes as a group without the risk
of confusing them with their parent elements’ native attributes. You
can also separate all linking attributes into a namespace of their own,
but this is not really necessary unless you plan to use them with dif-
ferent document vocabularies.

It’s also advisable to make all linking attributes but the address (i.e.,
link) optional and provide sensible default values. For example, you
can mandate that the missing linktype attribute in a linked element
implies that the link is internal.

Classifier element types. For in-flow links, instead of (or, better,
in addition to) the bulky classifier attribute, a separate element type
for each link type is more convenient. As these element types will be
used quite often, each should have a short but clear name:

links3.5

XSLT web development110

...available on the <ext link="www.kirsanov.com/te/">original
site</ext> and <int link="mirror/te">mirrored here</int>.

Separate element types have the additional advantage of being easier to vali-
date with grammar-based schema languages like DTD or XML Schema.

Advanced link types. Other link types may have their own sets of
required and optional attributes and may perform other functions,
besides creating a link. For instance, dictionary links from the above
classification are likely to be used only within text flow, so we can in-
troduce a special element type for them and declare that whenever the
address attribute is missing, the element’s content is taken as the
(abbreviated, 3.5.3) address:

...was going to <def>disembogue</def> profusely.

...at which point it <def word="disembogue">disembogued</def> itself...

Here, two occurrences of the obscure word disembogue are linked to
a dictionary site, so that a pop-up window or floating tooltip with the
word’s definition could be displayed when the link is activated in some
way (e.g., clicked or hovered over). You don’t need to specify the dic-
tionary site to use, or the complete URL for accessing the dictionary
script, or the JavaScript code to create the pop-up; all this is taken care
of by the stylesheet. The only thing you may need in the source is the
word attribute that optionally provides the base form of the linked
word or phrase; if it is absent, the contents of the def element
are used.

For generality, this special kind of link can also be given by a link element
with linktype="dictionary" and the link attribute playing the role of word.

Similarly, a thumbnail link could be created by a thumb element with
a single attribute (e.g., image). This attribute would provide the
identifier of the corresponding image, with the stylesheet doing all
the rest: inserting and formatting the thumbnail, creating a display
page with the full-size version of the image, and linking it to the
thumbnail. The stylesheet can even automatically create the thumbnail
from a full-size image (5.5.2.6).

111chapter 3 elements of a web site

3.5.2link types: advanced link types

Abbreviating addresses3.5.3

When creating a link, we usually want to specify a certain piece of
content that the link will point to. What a URL allows us to specify,
however, most often is a file that can be moved, renamed, or deleted
even if the content we are interested in is still out there somewhere.
Moreover, a URL includes a lot of technical information (protocol,
file extension) that is not relevant for our purpose of establishing a
content-level link.

All this invites the idea of using abbreviated addresses that would hide
the underlying technical complexity of URLs and provide an abstrac-
tion layer protecting our semantic XML from URL changes. For each
address, we will create an identifier to be used in the XML source; at
transformation time, the stylesheet will resolve this identifier into the
actual URL to be put into the corresponding HTML link element.

Example: RFC links. Suppose you often need to link to enumerated
documents such as RFCs.10 Such links could use a special value of the
link classifier attribute and/or an element type of their own. However,
to make them even more convenient, it is natural to use only the RFC
number as an abbreviation for the complete URI:

...as per <rfc num="1489"/>.

Or, the same could be spelled out in a generic fashion:

...as per <link linktype="rfc" link="1489"/>.

This latter variant uses generic linking attributes that can be applied to dif-
ferent elements to make links out of the corresponding objects, whereas the
num attribute is only recognized in an rfc element.

The XSLT stylesheet will have to recognize this type of link, possibly
apply some special formatting to it, and most importantly resolve
(unabbreviate) the abbreviated address. In this example, unabbreviation
would supply the complete URL of the referenced document for the
HTML link:

. .

10. An RFC (Request for Comments) is one of the series of standards created by the
Internet Engineering Task Force (IETF) and governing most of the underlying tech-
nical structure of the Internet.

links3.5

XSLT web development112

...as per
RFC 1489.

You could also allow an rfc element to enclose character content:

...which was <rfc num="1489">defined</rfc> in 1993.

which would give the following in HTML:

...which was
defined
in 1993.

Mnemonic addressing. Abbreviated addresses in your source XML
must be unique only within your site, as opposed to URLs that are
globally unique. This means you can make them easier to remember
and more meaningful (to you) than are URLs. The abbreviated ad-
dresses are also completely devoid of irrelevant technical details and
can be arbitrarily long (i.e., detailed and readable) or arbitrarily short
(i.e., quick to type and quick to read).

Multiple abbreviation schemes3.5.3.1

You can use as many independent abbreviation schemes as necessary.
Each more or less complete and logical group of addresses can be
served by its own abbreviation algorithm (and the corresponding res-
olver in the stylesheet). For example, links to an online dictionary or
search engine might be abbreviated to just the word you want to look
up; links to W3C standards can be represented by their unique iden-
tifiers as used by the W3C site (e.g., xslt20 for XSLT 2.0, which un-
abbreviates into http://www.w3.org/TR/xslt20/). Any address domain
whose URLs can be “losslessly compressed” into a shorter or easier-
to-remember form is ripe for abbreviation.

With multiple abbreviation schemes, the stylesheet must be able to
know which one to use for each link. This is where link types
(3.5.2) are useful, distinguished by a classifier attribute value (<link
linktype="rfc" ...>) or the element type (<rfc ...>) used for each
link. It is natural to define abbreviation schemes on a per-link-type
basis, or even to define link types based on the abbreviation schemes
they are using.

113chapter 3 elements of a web site

3.5.3.1multiple abbreviation schemes

Along with resolving the address, your stylesheet can perform other
processing tasks, such as retrieving the title of the referenced RFC to
be displayed in the link’s floating tooltip. A Schematron schema for
your source definition, in addition to performing link syntax valida-
tion, can also check for broken links (5.1.3.3). Another important
advantage is that you can easily change all your RFC links from one
RFC repository to another simply by editing the stylesheet.

Unabbreviation algorithms3.5.3.2

To expand the abbreviated addresses, your stylesheet may use any
sources of information, such as local or remote database queries or
even web search. It’s easiest, however, to create simple algorithmic ab-
breviations that map to the corresponding URLs through some
calculations or string manipulations.

Thus, for external links, the most obvious and perhaps the only sensi-
ble abbreviation is dropping the protocol specification (usually
http://) from the URLs. Even this simple provision can make address
input somewhat easier by allowing you to type www.kirsanov.com in-
stead of http://www.kirsanov.com.

Note, however, that in this case the stylesheet must be able to recognize the
protocol part of an address and only add http:// if it is missing. Addresses
that already contain a protocol specification (be it http://, https://, or
ftp://) must not be modified in any way.

Multicomponent abbreviations3.5.3.3

An address abbreviation may contain more than one component. This
is often necessary to link to scripts (as opposed to static pages) that
require a number of parameters in the request URI. Some of these
parameters (e.g., the partner’s ID or formatting options) are static and
can therefore be filled in by the stylesheet, but the key information
pointers (e.g., the date and the number of the article within that date)
must be present in the source of the linking page. Here’s an example
of a link with a multicomponent abbreviated address:

links3.5

XSLT web development114

As <foonews
 date="02-12-2003"
 num="6490">reported</foonews> by FooBarNews...

which could be expanded into the HTML link:

As reported
by FooBarNews...

Internal links3.5.3.4

One highly recommended abbreviation scheme that makes sense for
almost any site is using page identifiers, defined in the master docu-
ment, instead of pathnames11 for internal links. This will make your
site’s structure much more flexible because you will be able to rename
a page or move it around without changing all the other pages that
link to it.12

Linking a foobar. For example, suppose you have a page on your
site describing a product called Foobar Plus. You don’t want to spell
out the complete pathname each time you link to that page, as it may
be quite long (e.g., /products/personal/foobar_plus). Much more
convenient would be using that page’s unique (within your site) and
easy-to-remember identifier. Since you don’t, in all probability, have
another Foobar Plus on your web site, it is natural to use an abbreviat-
ed name of the product as the identifier:

Check out our new <int link="fb+">Foobar Plus</int>!

The correspondence between web pages and their identifiers is to be
set in the master document (3.9.1.2, page 129). Now it doesn’t matter
if your Foobar Plus page is moved, say, from /products/personal/
foobar_plus to /products/corporate/foobarplus. All you need to
do is change the reference in the master document and retransform
all site pages.

. .

11. Strictly speaking, HTML links to URIs, not pathnames, but links within a site
almost always use relative or absolute pathnames (without a server part) that are also
valid URIs.
12. Unfortunately, this only works for your own site. Visitors coming from another
site linking to yours will still get a 404 for a moved page.

115chapter 3 elements of a web site

3.5.3.4internal links: linking a foobar

Aliases. To make life even easier for site maintainers, you can allow
them to use any of a number of aliases referring to the same page. For
example, the Foobar Plus page might just as well be linked to as fb+,
foobar+, or foobar-plus. All you need to do is register all such aliases
in the master document (see Example 3.2 on page 143).

Linking translations. In multilingual sites, a special kind of link
that must be present on every page is the link(s) to the other language
version(s) of the same page. The absolute minimum of information
needed to construct such a link is, obviously, the identifier of the lan-
guage we are linking to. Thus, if we write on the Foobar Plus page

<lang link="de">This page in German</lang>

then the stylesheet will use the current page’s pathname to construct
the proper HTML link — for example,

This
page in German

or

This
page in German

or any other variant, depending on your web site setup. Once again,
the correspondence between languages and link URIs is deduced from
the master document’s data.

Images and objects3.6

The majority of static images, Java applets, and Flash animations on
web pages are not independent objects. Most often, they are compo-
nents of higher-level content constructs. An image may be a visual
accompanying a section heading, a background of a table or the entire
page, or a navigation button that is part of a larger navigation system.

In all these cases, your source XML will not contain any image
references at all: It is the stylesheet’s responsibility to know what im-
ages to use with what content structures, where to take these images,
and how to format them. Much less frequently, usually within text

links3.5

XSLT web development116

flow, you might need to display an image for its own sake — such as
a photo, a technical illustration, or a map. It’s only these standalone
objects that you’ll have to specify explicitly in the semantic XML
source of a page.

This section covers both static images and various embedded objects such as
Java applets, ActiveX controls, and Flash animations. All of these are similar
from the viewpoint of XML source markup; below we talk mostly about im-
ages, but you should keep in mind that the same applies to most non-HTML
external objects used on web pages.

Element type names. The name of the element type for including
standalone images in your documents may be either generic (e.g.,
image) or specific (e.g., map or portrait). If you’re only planning to
use a few well-defined types of images in a few well-defined situations,
you can use narrow and descriptive names for each type. Otherwise
(or if you do not yet have any specific plans for the use of images at
all), a generic image element would be just fine.

Images as attributes. An image object may be quite complex, with
additional components, such as a photo caption or credit, stored in
attributes or child elements. However, quite often all you need to
specify is a source location or an identifier for an image that is an at-
tribute of some other object rather than a standalone object in its own
right. For the image types that can be used this way, you can use an
attribute of the same name as the standalone image’s element type.
For example, if your sections may feature a photo next to the section’s
heading, it is more convenient to write

<section image="location">
<head>Section heading</head>
...
</section>

than to write

<section>
<image src="location"/>
<head>Section heading</head>
...
</section>

117chapter 3 elements of a web site

3.6images and objects

even though your stylesheet may be programmed to create identical
formatting for these two inputs.

Abbreviating location3.6.1

Just as a link’s main attribute is the destination address, an image ele-
ment must, before all, specify the location of the image resource. And,
just as we used abbreviated addresses in links, it is natural to use
mnemonic identifiers instead of complete image locations. For exam-
ple, by writing

<image src="nymap"/>

instead of

<image src="img/maps/nymap.png"/>

you make your XML source more readable, easier to edit manually,
and less prone to errors.

In the simplest case, an abbreviated image reference can be made from
its filename by removing the path and extension (which is supposed
to remain constant for all images). In more complex cases, an abbrevi-
ation might be composed of several parts expressed as attributes, such
as a date or a classifier. Finally, your master document could simply
store a list of all image locations associated with arbitrary identifiers
and possibly aliases (compare 3.9.1); in this case, all image references
in your source will be completely independent of the corresponding
locations or other image properties.

Abbreviating aggressively. Along with stripping directory and extension,
filename-based abbreviations can be made even more convenient by
programming the stylesheet to perform case folding (converting everything
to lower- or uppercase) and to remove all whitespace and punctuation. With
these provisions, to reference img/maps/nymap.png in the above example, we
could use any of nymap, ny map, N.Y. Map, and so on.

The goal of using abbreviations is to have your image references named
intuitively and consistently and to provide just enough information

images and objects3.6

XSLT web development118

in XML for the stylesheet to be able to reconstruct the complete
pathname or URI.

Formatting hints3.6.2

Standalone images may be particularly difficult to separate into inde-
pendent aspects of content and formatting. The idea of specifying an
image identifier and possibly its role in the XML source and then let-
ting the stylesheet figure out all the formatting parameters is attractive,
but the reality may be not so neat. Sometimes, you’ll have no choice
but to add ugly formatting clues to the XML source to get the
correct rendition.

An example is a layout where several images are placed on a page, interspersed
with text, and aligned alternately against the left or right margin. It is natural
to have the stylesheet do the alternating alignment so that only the image
identifiers need to be supplied in the source. However, sometimes you may
want to force a particular image to a particular margin in the middle of a
page. Adding align="right" to your XML source is hardly semantic but may
be unavoidable if, for example, a left-aligned image visually conflicts with a
nearby left-aligned heading.

Think ahead. It is much easier to prevent a disease than to cure it.
Thus, it is preferable to design your page layout in such a way that it
can be created strictly automatically based on nothing but the seman-
tic XML source. Avoid situations where only manual interaction can
produce acceptable formatting.

For example, if you plan to use alternating alignment of images, you could
either use centered headings (which will not conflict with either image align-
ment) or mandate that any image be at least one paragraph away from the
nearest heading (this restriction is easy to enforce automatically using
Schematron).

Separate namespaces. However, there are situations where adding
manual formatting hints to your XML source cannot be avoided. This
may happen not only with images, although they are a frequent source
of problems. It is advisable to use a separate namespace for all hints
that pertain to the same output format (e.g., HTML):

119chapter 3 elements of a web site

3.6.2formatting hints: separate namespaces

<page xmlns:forhtml="http://www.kirsanov.com/formatting-hints-html">
 <p forhtml:column-break="true">
 ...
 <image src="solid wood table" forhtml:align="right"/>
 ...
 </p>
</page>

Here, a hint is added to the p element specifying that this paragraph
must start a new column in a multicolumn layout (assuming the
stylesheet cannot figure this out automatically). Another hint floats
an image within that paragraph to the right margin.

Now, if you want to render the same XML source into a different
format, such as PDF, the new stylesheet will have no problems ignor-
ing anything from the “for HTML” namespace. It is also very easy to
strip all HTML formatting hints to produce a purely semantic version
of the source. You can store several sets of formatting hints in the same
source documents, each in its own namespace, and have the stylesheet
select the set corresponding to the current output format (such as
“HTML with columns,” “HTML without columns,” “printable
HTML,” “PDF,” etc.).

HTML documents often use the height and width attributes in img elements
as spatial hints to speed up rendering of the page in a browser. You don’t need
to supply these values in XML; a stylesheet can find out the dimensions of
all referenced images itself (5.5.1).

Image metadata3.6.3

Besides the location (full or abbreviated) and possibly formatting hints,
an image element may contain various other information.

Textual descriptions. The XHTML specification requires that each
image be provided with a piece of text describing what the image is.
Traditionally, the alt attribute of an img element has been used for
short descriptions, but in HTML 4.01 and XHTML the longdesc
(“long description”) attribute was added to complement alt. Normal-
ly, an image description should contain:

images and objects3.6

XSLT web development120

4 nothing (empty string) for purely decorative images (such as
components of frames, backgrounds, and separators);

5 the text visible on the image for images that display text (thus,
the alt of a graphic button must contain exactly the button’s label
and nothing else);

6 a short description of the image’s role or content for meaningful
images (e.g., John's photo).

It’s only in the last of the above cases that the image description may
need to be supplied in the XML source, preferably in the content of
an image element (2.3.3). However, if your abbreviated image iden-
tifiers are sufficiently readable most of the time, you can save some
typing and just reuse these unresolved identifiers (such as NY map) for
alt values.

Captions. Often, a standalone image must be accompanied by a vis-
ible descriptive piece of text (as opposed to alt descriptions that are
normally not shown by graphic browsers). This may be a caption, a
photo credit, a copyright notice, or anything else that semantically
belongs to this image.

Since this content may need further inline markup, it is better to store
it in children of your image element rather than in attributes (2.3.3,
page 79). The formatting of a caption or caption-like element is de-
termined by the type of the parent image element, which in turn is
evident either from its element type name or from the value of a clas-
sifier attribute. For example, a photo could be marked up as follows:

<photo src="sight">
 <caption>A rare sight.</caption>
 <credit>Dmitry Kirsanov</credit>
</photo>

Upon encountering a photo element, the stylesheet would expect to
format its caption child element as a photo caption and the credit
child element, if present, as credit (e.g., separately from the caption,
in a smaller font size, and with “Photo by” prepended to the
credit text).

121chapter 3 elements of a web site

3.6.3image metadata: captions

Imagemaps and interactive objects3.6.4

A simple linked image can be created by adding linking attributes
(3.5.1) to the image element. Sometimes, however, you may need to
create an imagemap where different regions of the image are linked
to different destination addresses.

The quick-and-dirty approach. It is natural to reuse the generic
link element type for specifying multiple links inside an imagemap,
by placing link elements in the image and adding coordinate at-
tributes to define the linked area:

<image src="chart 3">
 <link link="address1" shape="rect" x1="0" y1="0" x2="100" y2="20"/>
 <link link="address2" shape="circle" x="50" y="50" radius="5"/>
</image>

In HTML, all coordinates for an imagemap area are cramped into one com-
ma-separated attribute value string. You don’t need to reproduce that in your
XML — instead, you can specify one value per attribute and use descriptive
attribute names. It’s a good idea to use your schema to check that the set of
coordinate attributes in each link element corresponds to the value of shape.

The thoroughly semantic approach. The syntax shown above may
work for an occasional imagemap, but it is still not semantic enough
and needs to be improved if you routinely use imagemaps (or other
interactive objects). Namely, do the pixel values in the link attributes
really belong in the source? Probably not, as they are closely bound to
the image’s “presentation” and tell us nothing about its “content.” A
better approach is to use each link element to associate the identifier
of an image area with a link address — for example,

<image src="chart 3">
 <link link="address1" area="block1"/>
 <link link="address2" area="central-blob"/>
</image>

The correspondence between the area identifiers (block1 and central-
blob in this example) and the actual pixel coordinates may be stored

images and objects3.6

XSLT web development122

in the site’s master document. If, however, you want an imagemap to
be truly orthogonal to everything else on the site and easily portable
to other sites, consider creating a separate XML document for each
imagemap storing its active areas and their identifiers.

Accessibility. Interactive objects such as Java applets and Flash
movies may also incorporate multiple links (one example is an animat-
ed Flash menu). Even though you don’t have to specify these links in
the HTML code embedding the object, it still makes sense to list them
in the XML source of a page so that the stylesheet can construct an
alternative access mechanism for those users who cannot (or don’t
want to) peruse this interactive object.

Tables3.7

Tables are perhaps the most abused feature of HTML, with the vast
majority of tables on web pages being used for layout purposes, not
for presenting inherently tabular data. If (like most web designers)
you are going to use HTML tables for web page layout, you cannot
reflect that in the semantic XML source of a page in any way. It’s only
the stylesheet that needs to be concerned with layout table
construction.

Sometimes, however, you may have some genuinely tabular data that
you want to format into some sort of a table on a web page. Still, this
does not mean that you have to think in terms of rows and columns
when creating a semantic source for such a table.

If you have something you can name, do it. For example, consid-
er a sales data table listing sales figures for several products across
several years. The XML way of marking up this data would be to
forget that you’re working on a table and simply list all available data
in an appropriately constructed element tree:

123chapter 3 elements of a web site

3.7tables: if you have something you can name, do it

<sales-table>
 <product>
 <name>Foobar</name>
 <sold><year>1999</year><number>123</number></sold>
 <sold><year>2000</year><number>140</number></sold>
 <sold><year>2001</year><number>142</number></sold>
 </product>
 <product>
 <name>Barfoo</name>
 <sold><year>1998</year><number>89</number></sold>
 <sold><year>1999</year><number>14</number></sold>
 </product>
</sales-table>

This approach frees you from worrying about column alignment, sort
order, or empty cells — just dump all your data and you’re done. All
the rest will be performed automatically by the stylesheet: It can filter
out a subset of the provided data, group values in rows and columns,
sort them, and fill in “N/A” for missing values. Thus, the above exam-
ple might come out as follows:

 1998 1999 2000 2001

Barfoo 89 14 N/A N/A

Foobar N/A 123 140 142

Tables from triplets. In some cases, such a data-centric approach may also
make your source significantly more compact than the table rendition. Thus,
a sparse table with mostly empty cells can be represented in the source by
triplets consisting of a row name, a column name, and the corresponding
value at their intersection. Since such a source does not contain separate lists
of all columns and rows, the stylesheet will compile them from the triplets.

Is it worth it? Granted, for an occasional table or two, this may be
too much work: You’ll have to program your stylesheet to recognize
various element types and perform various operations (such as normal-
izing dates) that may be necessary for your tabular data. For simple
isolated tables, you may be better off more or less directly reproducing
in XML the structure of the target HTML table. However, if you have
a lot of simple tables (or a few complex ones) with similar data, or if
your tables are updated often, the benefits of the semantic data-centric

tables3.7

XSLT web development124

approach may easily outweigh the simplicity of the straightforward
HTML imitation.

Also, the tabular data on your web site is likely to be coming from
some external source, such as a database or a spreadsheet. When you
write the code to update your tables automatically, it is usually much
easier to first transform the external data into a semantic XML tree
and then let the stylesheet do table layout.

Forms3.8

Interactive elements in HTML are grouped into forms. Simple forms
such as site search or email newsletter subscription are often used on
many pages of the site, and your XML does not need to detail the
structure of these forms. Instead, in your source you can treat such a
form as an indivisible entity — for example, as a special type of
orthogonal block (3.1.2) that can be inserted wherever a normal block
is allowed.

Sometimes, even this is not required. For example, if all pages on your
site contain a search field in the page footer, you don’t need to mention
it in the XML source at all. Your stylesheet will simply add this form
to every page it produces, just as it adds all other page components
that remain the same from page to page.

What if you need to build something more complex, such as a ship-
ping address input form or a survey form? In these cases you’ll need
to create an appropriate element type for each variety of the form’s
input controls (such as text fields, radio buttons, and drop-down lists)
as well as for any higher level semantic constructs within the form.
This work can be made much easier by reusing some of the existing
form vocabularies.

Existing vocabularies. An obvious choice for the existing vocabulary
from which you could borrow form-related markup is XHTML, espe-
cially if it is your target vocabulary. The Forms module,13 available

. .

13. www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_forms

125chapter 3 elements of a web site

3.8forms: existing vocabularies

starting from XHTML 1.1, may be a good first approximation. It
covers many widget types and allows for proper logical structuring of
your form.

However, in many cases the XHTML form markup may be too pres-
entation-oriented to be useful for your semantic XML — or simply
too awkward. This is mostly due to the historic baggage of older
HTML versions. Modern HTML and XHTML had to pile their
logical markup provisions on top of the old — limited and inflexi-
ble — form components.

For instance, in XHTML you have to write

<label for="firstname">First name:</label>
<input type="text" id="firstname"/>

instead of the more natural

<textfield id="firstname">
 <label>First name:</label>
</textfield>

HTML 4.0 had to define a separate label element that is linked to
its input by a for attribute simply because it had to stay compatible
with older HTML versions that did not allow any children in
an input.

In your source definition, you are free from these concerns and can
therefore mark up your forms in a more logical and readable way. It
is also important that your own markup may be better integrated with
other parts of the system; for example, you could use an abbreviation
(3.5.3) for the form submission address.

Another existing vocabulary worth looking at is XForms,14 recently
developed by the W3C (see 6.1.3.1 for an XForms example). This is
a modern XML-based processing framework that defines not only
forms markup but data submission and processing as well. Compared
to XHTML forms, XForms markup is more logical and presentation-
independent (for example, one form can be rendered both visually in

. .

14. www.w3.org/MarkUp/Forms/

forms3.8

XSLT web development126

a graphical browser and aurally by a speech browser). Once again,
your choice between borrowing XForms markup or developing your
own should depend on the complexity of your forms and their relative
importance in the project.

Formatting hints. Form presentation is a difficult task. Even with
full manual control, it’s not always easy to lay out a form so that it
looks perfect and remains usable for any data that may be filled into
it. Even more difficult is to automate form layout, enabling the
stylesheet to consistently build good-looking form pages from the se-
mantic description of the forms’ structure. To add insult to injury,
different browsers on different platforms often render form controls
in wildly different ways.

The key is keeping the layout simple and flexible. Don’t strive for
precise placement or alignment of controls, as this is impossible to
achieve given the vastly different font and screen sizes in browsers.
(Also, do not tie the position of other parts of the page to the size or
placement of a form — this often results in a broken page layout.)
Take advantage of the form structure described in the source by sepa-
rating groups of form controls into independent layout blocks.

All that said, adding formatting hints (3.6.2) to control form layout
may turn out inevitable. The most common case is specifying the size
of text input fields.15 If you think you need something more elaborate
than that, it is usually an indication that you should try instead to
simplify your form’s presentation (or your page design in general).

Master document3.9

In the previous chapter (2.1.2.1, page 49), we found that any web site
consisting of more than one page must have a master document
providing shared content and a site directory. In this section, we’ll
look at some practical examples of constructs in a typical web site’s
master document.

. .

15. It might be argued that the size of an input field is one of its essential semantic
aspects and not a superficial formatting property.

127chapter 3 elements of a web site

3.9master document

You may find the sample master document described here (see
Example 3.2, page 143, for a complete listing) somewhat eclectic. This
eclecticism, however, stems from the real-world practice of XML
web sites. In fact, the master document is more of a database than a
document (1.2). The layout of components in this database is rarely
important, as they are not processed sequentially but accessed in arbi-
trary order. For lots of ideas on how to access and use the master
document content from the stylesheet, see Chapter 5.

A master document represents a new document type, with its root element
type different from that of a page document, and most other element types
usable only in a master document. However, if you don’t use DTDs (2.2.4)
or XSDL, this distinction has little practical value, and you can use one
schema to validate all of your XML (both page documents and the master
document). Such a schema written in Schematron is shown in Example 3.3,
page 149 (see also 5.1.3 for advanced Schematron checks).

Site structure3.9.1

The role of the master document is that of a hub that all other docu-
ments refer to when they need to figure out a wider context of the
web site or establish mutual links. Whenever the stylesheet needs some
information that is not supplied by the currently processed document,
it will consult the master document to find either that information or
a link to it.

Therefore, the most important part of a master document is the site
directory — a collection of information about all pages of the site and
their organization. This directory is used for building the site’s naviga-
tion as well as for resolving abbreviated internal links (3.5.3).

Besides pages, other components of the site may also be mentioned
in the master document, such as all Flash animations you have or all
images of a specific kind used on the site. Units of orthogonal content
must be listed in the master document as well (3.9.1.3) so that pages
can reference and incorporate them. Finally, sources of dynamic con-
tent must be registered for the stylesheet to know what to insert into
static page templates (3.9.1.4).

master document3.9

XSLT web development128

Menu structure3.9.1.1

A flat list of all pages is not sufficient for building a usable site. We
also need to represent the structure of the site’s menu and the
correspondence between menu items and pages.

A simple site’s menu may be little more than a linear list of links to
each of its pages. However, most sites require more complex menu
structures. Common are hierarchical menus where some of the top-
level items encompass multiple subpages and/or nested submenus.
Such a structure is straightforward to express in XML.

Some sites may have more than one menu. For example, there may
be a menu of topics (content sections) and another independent menu
of tools (pages that help navigate the site, such as search and site map).
Such orthogonal menu hierarchies can be stored in independent XML
subtrees within the master document.

Menu items and pages3.9.1.2

What do we need to store in the master document for each menu
item? To build a clickable menu element, we must know at least its
label (the visible text displayed in the menu) and the page that it is
linked to. A label may contain inline markup and should therefore be
stored in a child element. As for the link, it is natural to use the general
linking attributes with abbreviated addresses that we’ve developed for
in-flow links on site pages (3.5.1).

Items vs. pages. A menu item is not the same as a page of the site.
Some pages may not be available through the menu, while others may
be linked from more than one menu item. Therefore, the page itself
must be represented by a separate element that the menu item element
will link to.

However, that does not mean that these page elements must be stored
in a different part of the master document. You can still categorize all
your pages under the branches of the menu tree: Even if a page is not
linked from the menu, usually you can find a branch where it logically
belongs (unless it is orthogonal content, 3.9.1.3). The stylesheet will

129chapter 3 elements of a web site

3.9.1.2menu items and pages: items vs. pages.

thus be able to read the menu structure both hierarchically (when
looking for menu items) and sequentially (when looking for pages).

Here’s a possible representation of a menu item:

<item link="products">
 <label>Products</label>
 <page id="products" title="Our products"
 src="products/"/>
 <page id="software" title="Our software"
 src="products/software/"/>
 <page id="hardware" title="Our hardware"
 src="products/hardware"/>
</item>

In addition to a label and one or more pages, an item may also con-
tain other item children. A complete menu description would thus
consist of a hierarchy of items under one parent, e.g. menu. Note that
in each page element, the id attribute provides a unique identifier of
not only that element, but of the page itself. It is these identifiers that
are used as abbreviated addresses (3.5.3) in internal links.

How unabbreviation works. When resolving a link, the stylesheet
translates the page identifier into the location of that page taken from
the src attribute. However, that attribute’s value is also somewhat
“abbreviated” in that it omits irrelevant technical information such as
the filename extension and the default filename (usually index.html)
in a directory. These omitted parts are easy to restore by applying
simple rules, so the three page elements in the above example would
yield these page locations:

/products/index.html
/products/software/index.html
/products/hardware.html

Note that a location ending with a “/” is considered a directory and has
“index.html” appended; other locations only receive the “.html” extension.

Accessing the source. There is one more reason to store page
pathnames without extensions. When locations are resolved for the

master document3.9

XSLT web development130

purpose of accessing the source XML documents rather than creating
an HTML link, the same src values are transformed into *.xml file
locations (assuming the directory structure of the site source is similar
to that of the transformed site, 3.9.3). For stylesheet code examples
to access this menu structure, see Chapter 5 (5.1.1, 5.7).

Storing page metadata. Sometimes, a more complex layout for the
page elements may be necessary. For example, if your bilingual site
provides two language versions of each page, a page element could
hold both metadata that is common to all language versions of the
page (e.g., the page’s identifier and source location) and language-
specific metadata (e.g., title):

<page id="software" src="products/software/">
 <translation lang="en">Our software</translation>
 <translation lang="fr">Nos logiciels</translation>
</page>

Some of the metadata (3.1.1) may also be moved from page documents into
the master document for convenient access. For example, if you want to
control which pages of the site are to be seen by search engine spiders and
which are hidden from them, you could add a corresponding value to each
page’s source document. However, since this information will be pulled from
all pages of the site simultaneously, it is more convenient to add a spider
control attribute to the page element in the master document. This way, the
stylesheet will be able to produce a site-wide robots.txt file for external spi-
ders and/or a configuration update for a local search engine spider without
accessing all page documents.

Orthogonal content3.9.1.3

Along with all pages, a master document should also list all the units
of orthogonal content that your site will use (2.1.2.2, page 51).
However, unlike pages, orthogonal content references cannot be cate-
gorized under the menu hierarchy (that is why this content is orthogo-
nal, after all). You’ll need to create a separate construct to associate
orthogonal content identifiers with corresponding (abbreviated) source
locations — for example,

131chapter 3 elements of a web site

3.9.1.3orthogonal content

<blocks>
 <block id="news" src="news/latest"/>
 <block id="subscribe" src="scripts/subscribe"/>
 <block id="donate" src="scripts/donate"/>
</blocks>

Now if the stylesheet processing a page document encounters a block
that has no content of its own but references some orthogonal content
unit — for example, by specifying idref="news" — the document at
news/latest.xml will be retrieved and inserted into the current docu-
ment, formatted as appropriate for an orthogonal content block.

It is important that the id and src attributes of a master document’s block
element have the same names and semantics as the attributes of page elements
(3.9.1.2). We will use this when writing stylesheet code to unabbreviate links
or search through all pages of the site (Chapter 5), since every page must be
registered as either a page in the menu or a source of an orthogonal block
(or both).

Extracting orthogonal content. In the last example, each orthogo-
nal block was stored in its own file — but this is not always the best
approach. You may want to reuse parts of regular pages as orthogo-
nal content.

For instance, the news page of a site is often a list of news items in
reverse chronological order. You may want to automatically extract
the most recent news item and display it in an orthogonal content
block on other pages of the site. Another example is a “featured
product” blurb extracted from that product’s own page and reused on
the front page of the site.

For these situations, what we need is a way to specify what part of the
original page document is to be reused as orthogonal content on other
pages. Since this part will most likely also be a block, we only need
to indicate the id of the block we are interested in. Thus, if the most
recent news block on the news page always has id="last", we could
write in the master document:

<block id="last-news" src="news/" select="last"/>

master document3.9

XSLT web development132

Now any page can place a copy of the latest news item by referencing
the corresponding orthogonal block by its identifier, last-news. For
example, your page document might contain

<block idref="last-news"/>

Likewise, the featured product blurb could be extracted from the block
with id="blurb" on that product’s page:

<block id="feature" src="products/foobar" select="blurb"/>

Here, the featured product is identified by the path to the
corresponding document (products/foobar.xml). When you want to
feature a different product, all you need to do is change this value so
it points to another product’s page (assuming each product page has
exactly one block with id="blurb"; see also 5.1.3.7). After that, all
pages that use

<block idref="feature"/>

will (after you rerun the transformation) display the blurb for the
new product.

Logically, without the select attribute, a master document’s block
will reference the entire content of the document pointed to by the
src attribute. Your Schematron schema could also check that the
referenced elements actually exist in the referenced documents (see
5.3.3.1, page 224 for how to code this).

No perfection in this world. It would be even more natural to use XPath
expressions for extracting orthogonal blocks. Then we could use not only the
id attribute value but any XPath test for identifying the block we need. For
instance, for the first block on the page, we would write

<block id="news" src="news/" xpath="//block[1]"/>

Selecting the last block that has a section inside would be as simple as

<block id="lastsection" src="dir/page"
 xpath="//block[section][last()]"/>

There’s only one problem with this kind of selector: In XSLT, you can’t take
a string and treat it as an XPath expression — and what the master document
(or any other document) stores in its attributes is always just strings from the
XSLT processor viewpoint.

133chapter 3 elements of a web site

3.9.1.3orthogonal content

Saxon offers the saxon:evaluate() extension function (4.4.2.1) that might
save the idea, but its implementation is quite limited, not to mention non-
portable to other XSLT processors. Much better is the dyn:evaluate() func-
tion16 from EXSLT (4.4.1) which is currently supported by several processors
but not by Saxon.

Registering dynamic content3.9.1.4

Recall our discussion of dynamic sites in 1.5. We found that a dynamic
web page is produced from two main parts — static templates and
dynamic values — and that both can (and should) use XML markup.
It’s now time to see how these concepts fit into the source definition
we are building.

One way of many. There exist different ways to aggregate dynamic content
and static templates. Some of them come before XSLT transformation, which
is usually the last stage in a dynamic XML web site workflow; in these cases,
you don’t need any special source markup because your stylesheet will get
complete seamless page source with both static and dynamic content.
However, in some situations (notably offline XSLT processing, 1.4.1) imple-
menting dynamic content aggregation in XSLT is convenient. This section
shows one approach to organizing such transformation-time incorporation
of dynamic content.

Reusing blocks. An orthogonal content block that the stylesheet
extracts from another document may be considered a special case of
a composite dynamic value. Therefore, it makes sense to extend our
blocks’ markup constructs so that they cover the “truly dynamic”
content as well — content that is calculated or compiled by some ex-
ternal process and not just stored in a static document.

We can define a number of block conventions that will allow us to
use blocks not only for enveloping independent bits of content but
also as links to external sources of information. Once again, our
guiding principle is: Let the page author use short mnemonic iden-
tifiers and hide all the gory details of accessing data in the master
document and/or stylesheet.

. .

16. www.exslt.org/dyn/functions/evaluate

master document3.9

XSLT web development134

Calling a process. Suppose we want to build a site map page that
automatically compiles a hierarchical list of all pages of the site. The
first thing we need is the static part of that page — a document that
stores all the static bits unique to the page, such as an introductory
paragraph and heading(s). This is a normal page that is listed in the
menu hierarchy in the master, just like any other page.

Wherever we want to insert our dynamic content into that static
frame, we place a block reference, e.g.:

<block idref="sitemap"/>

In the master, however, we cannot associate the sitemap identifier
with any source file, since no such file exists — the list of pages is
generated dynamically.

Instead, we must associate our dynamic block identifier (sitemap)
with an identifier of some abstract process that generates its data. You
can think of a process as a kind of a script or application; it may accept
some parameters that affect its output. Thus, if we write in the
master document (within the same blocks envelope used for orthog-
onal blocks)

<block-process id="sitemap" process="sitemap" mode="text" depth="2"/>

then the stylesheet will know that a sitemap block needs to be filled
in with data generated by the sitemap process with parameters
mode="text" and depth="2". This process can be, for example, a cal-
lable template within the stylesheet (4.5.1) or an external program.
With this approach, document authors don’t need to know anything
about processes or parameters; they use identifiers to refer to data
sources, and the master document associates each source with a process
and its set of parameters.

Watching a directory. A stylesheet can access external files even if
the list of these files is changing dynamically. For example, an external
process (which may or may not be another stylesheet) might be
dropping its output XML documents into a directory. Your stylesheet
would then read the list of files in that directory (5.3.2) and do what
it pleases with their content — such as dump all available content

135chapter 3 elements of a web site

3.9.1.4registering dynamic content: watching a directory

from all files into one page or perform some elaborate selection, filter-
ing, or rotation.

If, for example, your stylesheet implements a list-titles process that
takes a directory as a parameter and returns the list of title elements
from all XML documents in the directory, then you could define a
block to perform this operation on all (dynamically updated) docu-
ments in the news directory by writing in the master document

<block-process id="news-list" process="list-titles" dir="news/"/>

In a page document that wants to use this list, you would then
write simply

<block idref="news-list"/>

XML, not HTML. Note that processes similar to sitemap or list-titles
should only aggregate content, not format it. This means that the
corresponding templates or functions in your stylesheet must produce valid
XML data (nodesets), not HTML renditions. You would then feed these
nodesets to the regular formatting templates in the same stylesheet (see 5.3.3.1
for ideas on how to chain templates together). If a process is implemented as
an external program, it should return serialized XML data or plain text that
the stylesheet will be able to convert to nodesets.

Common content and site metadata3.9.2

On a typical web site, all pages contain bits of information that either
remain the same or change predictably from page to page. Some of
this repeating data, such as the company logo or tag line, actually be-
longs to the domain of presentation rather than content and therefore
needs to be filled in by the stylesheet rather than stored in the source.
Other components, such as webmaster email links, “designed by” sig-
natures, copyright or legal notices, etc., are natural to store in the
master document.

It is recommended that you envelop all such bits of content in one or
more umbrella elements, each containing data with similar roles or
positions on the pages. Here’s a master document fragment defining
the footer to be placed at the bottom of each page:

master document3.9

XSLT web development136

<page-footer>
 <designed-by>Site design: <ext link="www.kirsanov.com">Dmitry
 Kirsanov Studio</ext></designed-by>
 <legal linktype="internal" link="legal">Legal notices</legal>
 <contact linktype="internal" link="contact">Contact us</contact>
</page-footer>

Note that the elements inside page-footer may have mixed content
with any of the text markup, linking, or other elements that were
developed for page documents. In particular, we see internal and ex-
ternal links used in this example, each with its own address abbrevia-
tion scheme (3.5.3).

The page-footer parent element makes the stylesheet simpler and more bullet-
proof: Instead of providing templates for each of the individual footer ele-
ments, you can program the stylesheet to process all items within a page-
footer in turn, and only provide separate templates for those that differ from
others in formatting. With this approach, you’ll be able to add a new element
type for a new footer object even without changing the stylesheet.

Similarly, we can create an envelope for storing metadata that applies
to the entire site. Examples of such metadata include site-wide key-
word lists (which could be merged with page-specific keywords sup-
plied by the page documents, 3.1.1) and extended credits (which could
be put in comments in the HTML code of the site’s front page).

Processing parameters3.9.3

Your stylesheet will need to know some parameters of the environment
in which it is run as well as the environment where its HTML output
will be placed. The most frequently required processing parameter is
the base URI that the stylesheet will prepend to all the image and link
pathnames. By changing this parameter, you can turn all internal link
URIs from relative to absolute with an arbitrary base, which is useful
for testing the site in different environments. Other parameters may
provide the path to the source tree and the operating system under
which the stylesheet is run (which, in turn, may affect the syntax
of pathnames).

137chapter 3 elements of a web site

3.9.3processing parameters

Grouping parameters into environments. It is important that the
same set of source files may be processed on different computers —
for example, on a developer’s personal system, then in a temporary
(staging) location on the server, and finally in the publicly accessible
area on the target server. Each of these environments will require its
own set of processing parameters. It is therefore convenient to define
several groups of parameter values, one for each environment, and
select only one of the groups by its identifier when running the
transformation.

Where to store the environment groups? Obviously, the need to
group parameters and assign a unique identifier to each group makes
using XML very convenient — as opposed to, say, storing the values
within scripts used to run the site build process (6.5.1). Note also that
scripts are the most OS-dependent part of the site setup, so it is best
to keep them as simple and therefore as portable as possible. And of
all the XML documents of a web site, the two most likely choices are
the XSLT stylesheet and the master document.

Your stylesheet is more likely to be shared (in whole or in part) among
different projects, so it is not wise to use it for storing information
that is too project-specific. Also, even though you can use XSLT vari-
ables for storing processing parameters, it is more convenient to use
custom element hierarchies for structuring and accessing this data.
For these reasons, the master document emerges as the most natural
storage for processing parameters.

This does not mean that your master document will differ among
environments. Instead, all identical copies of it will have information
on all environments, and each environment will extract the relevant
set of data by passing a parameter to the stylesheet.

Here’s an example group of parameters that define the processing
environment called staging (see 3.10.2 for the meanings of
the elements):

master document3.9

XSLT web development138

<environment id="staging">
 <os>Linux</os>
 <src-path>/var/website/src/</src-path>
 <out-path>/var/website/out/</out-path>
 <target-path>/test/</target-path>
 <img-path>img</img-path>
</environment>

Site-wide content and formatting3.9.4

Normally, formatting of web pages is created by the stylesheet.
Sometimes, however, formatting is dependent on certain parameters
that, being more content than style, belong in the site’s source and
not in the stylesheet. Also, sometimes the stylesheet may need to create
objects that are used on many pages but do not belong to any one
page in particular. In both these situations, the master document is a
convenient place to store data.

Site-wide buttons. An example of such an object is a pair of
graphic buttons — “next” and “prev” — used on sequential pages
(such as chapters in an online book). If your stylesheet generates other
graphic buttons on the site (5.5.2), design consistency and maintain-
ability will be much better if all buttons are done in the same way.

These buttons are not specific to any particular page; moreover, pages
that use them don’t even need to mention the buttons in the source
because the stylesheet can automatically create the page sequence, in-
cluding appropriate navigation. All we need is to store the button la-
bels somewhere so the stylesheet can generate the buttons. It makes
sense to use the master document for this.

You can store the button labels in a separate element in the master
and program the stylesheet to regenerate the buttons when run with
the corresponding parameter. For example,

<buttons>
 <button>prev</button>
 <button>next</button>
</buttons>

139chapter 3 elements of a web site

3.9.4site-wide content and formatting: site-wide buttons

Summary examples3.10

This section presents examples of complete documents that bring to-
gether everything we’ve discussed in the last two chapters (and more).
The content is fictitious, but the structure and markup are from real
web site projects (somewhat abridged for readability).

Page document3.10.1

Compared to the master document example (3.10.2), the page docu-
ment in Example 3.1 is short and simple. This is, in fact, what you
should strive for in your project. Page documents are the primary work
area for those who will update and maintain the site, so the layout of
a page document must be as simple and self-evident as possible. (For
instance: Do we need indentation in page documents? Probably not,
unless it is taken care of automatically.)

The main rule of thumb is: If you can move a bit of information away
from a page document to the master or to the stylesheet, do that.

Master document3.10.2

Example 3.2 shows a master document that compiles most of the data
we discussed in 3.9 but adds a few new twists.

Languages. Our example site is bilingual (English and German), so
all titles and labels are provided in two languages, and the languages
themselves are listed in a languages element. We add an internal
DTD subset with mnemonic entity references (2.2.4.3) for German
characters.

Environments. For every installation where the site can be built, an
environment element with a unique id supplies the following
information:

4 src-path is the base directory of the XML source documents tree.

summary examples3.10

XSLT web development140

. .

en/team/index.xml: A page document.Example 3.1

<?xml version="1.0" encoding="us-ascii"?>
<page keywords="team, people, staff, competences, skills">

<title>Our team</title>

<!-- Main content block: -->
<block type="body">
<p>With backgrounds in technology and communications, FooBar's
experienced management team has - you guessed it -
the right combination of skills for success.</p>

<section image="mike">
<head>Mike M. Anager</head>
<subhead>CEO</subhead>
<p>CEO and Co-Founder, Mike leads FooBar towards bringing the vision
of "personal foobar" to reality. He previously served as Chief
Architect at <ext link="www.barfoo.com">BarFoo Corporation</ext>.</p>
</section>

<section image="ed">
<head>Ed N. Gineer</head>
<subhead>VP, Engineering</subhead>
<p>Ed has over 30 years of foobar design experience under his
belt. He has personally contributed to the most acclaimed of
our <int link="solutions">products</int>, including the famous
<int link="fbplus">Foobar Plus</int>.</p>
</section>

<section image="jack">
<head>Jack J. Anitor</head>
<subhead>Senior Janitor</subhead>
<p>Jack's expert janitorial skills and experience have been
critical in the success of FooBar.</p>
</section>
</block>

<!-- Orthogonal content blocks: -->
<block idref="subscribe"/>
<block idref="feature"/>

</page>
. .

141chapter 3 elements of a web site

3.10.2master document: environments

out-path is the directory where the output files will be placed
(used in batch mode, 5.6). It is also assumed that the images
subdirectory (img-path) is under out-path.

5

6 img-path is where all the images (both static and generated) are
stored. This path is relative to out-path.

7 target-path is the common part of all URIs used in the resulting
HTML files to refer to images or other pages of the site. Thus, if
you transform and view your pages locally at out-path, then
target-path may be the same as out-path. If, however, you
are going to upload the transformed site to a directory on a web
server and access it at, say, http://www.example.org/test/, then
target-path may be either /test/ (for absolute pathnames
starting with /) or an empty string (for relative pathnames).

On Windows, all absolute paths must be given in the file:/ URL format.17

This is the only standard and reliable way to represent an absolute pathname
that includes a drive letter. In HTML, URLs with file:/ work for both links
and image references in all browsers we tested. Other platforms may use abso-
lute pathnames without the file:/.

Menu. The menu lists all the pages of the site. For each page, the src
attribute contains the page’s pathname (add .xml for source files or
.html for output files) relative to the site’s root directory.

Each page has an id attribute used to link to it. To make life easier,
you can also provide a space-separated list of aliases in the alias at-
tribute. In internal links to this page, you can use either its id or any
of the aliases.

Each menu item has a label child storing the item’s visible label. In
the menu on a web page, each item is supposed to be linked to its first
page child, so there’s no need to specify a link in an item.

. .

17. The single slash character in this URL means that the file is available locally and
not on a network host.

summary examples3.10

XSLT web development142

It is assumed that the English and German versions of the source files
are named the same but stored in different directory trees under the
root directory. The corresponding directories are named after the
language designations defined in languages. So, for instance, the
complete path to the German fbplus source page in the staging en-
vironment would be constructed as follows:

/home/d/web/de/solutions/foobar_plus.xml

Blocks. The blocks element holds a list of orthogonal content blocks
with their identifiers (id), source document locations (src), and block
selectors (select, 3.9.1.3). Note that the subscribe page is listed only
once as an orthogonal source, while the solutions/foobar_plus page
is both in the menu and in the blocks list. For this reason, a block
must specify a complete location for the orthogonal content source
and not just its id, as all other links do, because not all orthogonal
documents are registered in the menu and assigned an id.

Misc. Finally, the master document lists the common part to be
prepended to page titles (3.2.4) on all pages (html-title), page footer
content (page-footer), and two labels for buttons that need to be
created by the stylesheet (buttons).

Note that the mailto links used in page-footer represent a special
link type (3.5.2, page 109) with an abbreviated address (the
corresponding resolved URI will have mailto: prepended to the
email address).

. .

_master.xml: The master document.Example 3.2

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE site [
 <!ENTITY auml "ä">
 <!ENTITY ouml "ö">
 <!ENTITY uuml "ü">
]>

143chapter 3 elements of a web site

3.10.2master document: example 3.2

<site>

 <!-- Environments: -->
 <environment id="local">
 <os>Windows</os>
 <src-path>file:/C:/Work/Website/XML/</src-path>
 <out-path>file:/C:/Work/Website/Out/</out-path>
 <target-path>file:/C:/Work/Website/Out/</target-path>
 <img-path>Images</img-path>
 </environment>
 <environment id="staging">
 <os>Linux</os>
 <src-path>/home/d/web/</src-path>
 <out-path>/home/d/web/out/</out-path>
 <target-path>/</target-path>
 <img-path>img</img-path>
 </environment>
 <environment id="final">
 <os>BSD</os>
 <src-path>/var/tomcat/webapps/cocoon/foobar/</src-path>
 <out-path>/var/tomcat/webapps/cocoon/foobar/</out-path>
 <target-path>/cocoon/foobar/</target-path>
 <img-path>img</img-path>
 </environment>

 <!-- Languages: -->
 <languages>
 <lang>en</lang>
 <lang>de</lang>
 </languages>

 <!-- Menu: -->
 <menu>
 <item>
 <label>
 <translation lang="en">Home</translation>
 <translation lang="de">Home</translation>
 </label>
 <page id="home" alias="index front fp frontpage" src="index"/>
 </item>

summary examples3.10

XSLT web development144

 <item>
 <label>
 <translation lang="en">Solutions</translation>
 <translation lang="de">Lösungen</translation>
 </label>
 <page id="solutions" src="solutions/intro_solutions"/>
 <item>
 <label>
 <translation lang="en">Life</translation>
 <translation lang="de">Das Leben</translation>
 </label>
 <page id="life" src="solutions/life"/>
 <page id="fbplus" alias="foobar_plus fb+ foobar+"
 src="solutions/foobar_plus"/>
 <page id="fbminus" src="solutions/foobar_minus"/>
 </item>
 <page id="universe" src="solutions/universe"/>
 <page id="everything" src="solutions/everything"/>
 </item>
 <item>
 <label>
 <translation lang="en">Our team</translation>
 <translation lang="de">Unser Team</translation>
 </label>
 <page id="team" src="team/index"/>
 <page id="history" src="team/history"/>
 <page id="hire" src="team/hire"/>
 </item>
 <item>
 <label>
 <translation lang="en">Contact</translation>
 <translation lang="de">Kontakt</translation>
 </label>
 <page id="contact" src="contact/contact"/>
 <page id="map" src="contact/map"/>
 </item>
 </menu>

145chapter 3 elements of a web site

3.10.2master document: example 3.2

 <!-- Orthogonal and dynamic blocks: -->
 <blocks>
 <!-- Extract the 'summary' block from the product page: -->
 <block id="feature" src="solutions/foobar_plus"
 select="summary"/>
 <!-- Extract the 'last' block from the front page: -->
 <block id="news" src="index" select="last"/>
 <!-- Take the entire subscribe.xml: -->
 <block id="subscribe" src="subscribe"/>
 <!-- Run site map generation: -->
 <block-process id="sitemap" process="sitemap"
 mode="text" depth="2"/>
 <!-- Run list-titles on all files in news/: -->
 <block-process id="news-list" process="list-titles"
 dir="news/"/>
 </blocks>

 <!-- The common part of the page titles: -->
 <html-title>
 <translation lang="en">Foobar Corporation AG</translation>
 <translation lang="de">Foobar Corporation AG</translation>
 </html-title>

 <!-- Page footer content: -->
 <page-footer>
 <copyright>
 <translation lang="en">© 2003 by Foobar Corporation AG.
 All rights reserved.</translation>
 <translation lang="de">© 2003 by Foobar Corporation AG.
 All rights reserved.</translation>
 </copyright>

 <language-switch>
 <translation lang="en">
 <lang link="de">Diese Seite in deutsch</lang>
 </translation>
 <translation lang="de">
 <lang link="en">This page in English</lang>
 </translation>
 </language-switch>

summary examples3.10

XSLT web development146

 <contact-webmaster>
 <translation lang="en">
 Problems using this site? Contact the
 <mailto link="webmaster@foobar.com">Webmaster</mailto>.
 </translation>
 <translation lang="de">
 Probleme mit dieser Web-Site? Kontaktieren Sie bitte unseren
 <mailto link="webmaster@foobar.com">Webmaster</mailto>.
 </translation>
 </contact-webmaster>
 </page-footer>

 <!-- Sequence navigation buttons: -->
 <buttons>
 <button id="prev">
 <translation lang="en">prev</translation>
 <translation lang="de">zurück</translation>
 </button>
 <button id="next">
 <translation lang="en">next</translation>
 <translation lang="de">vorwärts</translation>
 </button>
 </buttons>

</site>
. .

Schematron schema3.10.3

The schema in Example 3.3 is used to validate both the master docu-
ment and page documents of our Foobar site. This makes sense
because these document types have a lot in common. Still, for read-
ability the schema is broken into three patterns: One tests the master
document, another tests page documents, and the last one tests con-
structs that occur in both document types (this includes links, images,
and text markup).

Languages. The lang-check abstract rule checks that the element
being checked contains exactly as many translation children as there
are languages defined in the languages element. This rule can then
be reused for any element that provides information in two languages.
A separate rule with context="translation" additionally checks that

147chapter 3 elements of a web site

3.10.3schematron schema: languages

the lang attributes correspond to the defined languages and that each
language version is provided only once.

Element presence. In this schema, many element-presence checks
are lumped together for simplicity (e.g., all children of an environment
are checked in one assert). This does not have to be that way; if you
want your schema to be really helpful, you can write a separate check
with its own diagnostic message for each element type, explaining its
role and the possible consequences of its being missing from
the source.

Context-sensitive checks. Note that there are two different page
element types: One is used in the master document, and the other is
the root element type in a page document. The same applies to blocks.
The schema, however, has no problems differentiating between these
element types based on the context.

Reporting unknowns. One function of a schema is to check for
unknown element type names (most often resulting from typos). In
Schematron, this can be implemented by providing a dummy rule
with no tests, listing all defined element types as possible contexts.
Following that, a rule with context="*" signals error whenever the
rule is activated. This technique is possible because each context will
only match one rule per pattern; if an element was not matched by
the dummy rule, it is caught by the next rule and reported as
unrecognized.

It’s only a beginning. This example schema demonstrates only the
basic, most critical checks. Your own schema may be significantly
larger and more detailed than this, although it will likely use mostly
the same techniques. Consider this schema a phrasebook with com-
mon expressions for typical situations. Several advanced tricks for
validating complex constraints are discussed in Chapter 5 (5.1.3).

summary examples3.10

XSLT web development148

. .

schema.sch: A Schematron schema for validating page documents and the
master document.

Example 3.3

<schema xmlns="http://www.ascc.net/xml/schematron">

<!-- Checks for the master document: -->
<pattern name="master">

<rule context="site">
 <report test="count(//environment) = 1">
 Only one 'environment' found; you will need to create more if you
 want to build the site in a different environment.
 </report>
 <report test="count(//environment) = 0">
 No 'environment' elements found; the stylesheet will be unable to
 figure out pathnames.
 </report>
 <assert test="languages and menu and html-title and page-footer
 and blocks">
 One of the required elements not found inside 'site'.
 </assert>
</rule>

<rule context="page-footer">
 <assert test="copyright and language-switch
 and contact-webmaster">
 One of the required elements not found inside 'page-footer'.
 </assert>
</rule>

<rule context="environment">
 <assert test="src-path and out-path
 and target-path and img-path and os">
 One of the required elements not found inside 'environment'.
 </assert>
 <assert test="@id">
 An 'environment' must have an 'id' attribute.
 </assert>
 <assert test="count(//environment/@id[. = current()/@id]) = 1">
 The 'id' attribute value of an 'environment' must be unique.
 </assert>
</rule>

149chapter 3 elements of a web site

3.10.3schematron schema: example 3.3

<rule context="src-path | img-path | out-path | target-path">
 <report test="*">
 The '<name/>' element cannot have children.
 </report>
 <report test="(normalize-space(.) = '')
 and not(name() = 'target-path')">
 The '<name/>' element cannot be empty.
 </report>
</rule>

<rule context="languages">
 <assert test="count(lang) = count (*)">
 The 'languages' element can only have 'lang' children.
 </assert>
 <assert test="count(lang) > 0">
 The 'languages' element must have at least one 'lang' child.
 </assert>
</rule>

<rule context="languages/lang">
 <assert test="count(//languages/lang[. = current()]) = 1">
 Each language must be specified only once.
 </assert>
</rule>

<rule context="menu">
 <assert test="count(item) = count (*)">
 The 'menu' element cannot contain elements other than 'item'.
 </assert>
</rule>

<rule context="item">
 <assert test="label" diagnostics="label-element">
 A 'label' element is missing.
 </assert>
 <report test="count(label) > 1" diagnostics="label-element">
 There is an extra 'label' element.
 </report>
 <assert test="page">
 At least one 'page' element should be specified within an 'item'.
 </assert>
</rule>

summary examples3.10

XSLT web development150

<rule context="menu//page">
 <assert test="@src">
 Each 'page' must have an 'src' attribute.
 </assert>
 <assert test="@id">
 Each 'page' must have a unique 'id' attribute.
 </assert>
 <assert test="count(//page/@id[. = current()/@id]) = 1">
 The 'id' attribute value of a 'page' must be unique.
 </assert>
</rule>

<!-- Abstract rule to check 'transformation' children: -->
<rule abstract="true" id="lang-check">
 <assert test="count(translation) = count(//languages/lang)">
 The number of 'translation' children in '<name/>' must correspond
 to the number of defined languages. If this element does not
 exist in one of the languages, use an empty 'translation' element.
 </assert>
 <assert test="count(translation) = count(*)">
 There must be no child elements here other than 'translation'.
 </assert>
</rule>

<!-- Applying the abstract rule to all bilingual elements: -->
<rule context="label | html-title | copyright
 | language-switch | contact-webmaster | button">
 <extends rule="lang-check"/>
</rule>

<rule context="translation">
 <assert test="@lang">
 Each 'translation' must have a 'lang' attribute.
 </assert>
 <assert test="@lang = //languages/lang/text()">
 The value of the 'lang' attribute must correspond to one of the
 defined languages.
 </assert>
 <report test="@lang = preceding-sibling::translation/@lang">
 There is another 'translation' element under this parent with the
 same value of the 'lang' attribute.
 </report>
</rule>

151chapter 3 elements of a web site

3.10.3schematron schema: example 3.3

<rule context="blocks">
 <report test="*[not(self::block or self::block-process)]">
 A 'blocks' element must only contain one or more 'block' or
 'block-process' elements.
 </report>
</rule>

<rule context="blocks/block">
 <assert test="@id and @src">
 A 'block' defined in the master document must have both 'id' and
 'src' attributes.
 </assert>
 <assert test="count(//blocks/block/@id[. = current()/@id]) = 1">
 The 'id' attribute value of a 'block' must be unique.
 </assert>
</rule>

</pattern>

<!-- Checks for page documents: -->
<pattern name="page">

<rule context="/page">
 <assert test="@keywords">
 Please consider adding a list of keywords to the page. Use a
 'keywords' attribute for that.
 </assert>
 <assert test="title">
 Each 'page' must have a 'title'.
 </assert>
 <assert test="count(title) < 2">
 A 'page' may have only one 'title'.
 </assert>
 <assert test="block">
 Each 'page' must have at least one 'block'.
 </assert>
</rule>

<rule context="page//block">
 <assert test="@idref or *">
 A block must have either an 'idref' attribute (referring to an
 orthogonal block) or children.
 </assert>

summary examples3.10

XSLT web development152

 <report test="@idref and *">
 A block cannot have both an 'idref' attribute and children.
 </report>
 <report test="count(p | section) < count(*)">
 A block can only have 'p' or 'section' children.
 </report>
</rule>

<rule context="section">
 <assert test="head">
 A section must have a 'head'.
 </assert>
 <assert test="p">
 A section must have at least one 'p' (paragraph).
 </assert>
 <assert test="normalize-space(text()) = ''">
 A section cannot contain text. Use a 'p' element to include a
 paragraph of text.
 </assert>
</rule>

</pattern>

<!-- Rules common for master and page documents: -->
<pattern name="common">

<rule context="int | link[@linktype='internal']">
 <assert test="@link">
 An internal link must use a 'link' attribute to specify the
 page being linked.
 </assert>
</rule>

<rule context="p">
 <report test="(normalize-space(text()) = '') and not(*)">
 A paragraph cannot be empty. If you want to increase vertical
 spacing here, modify the stylesheet.
 </report>
</rule>

153chapter 3 elements of a web site

3.10.3schematron schema: example 3.3

<!-- Dummy rule listing all defined element types: -->
<rule context="
 block | block-process | blocks | button | buttons |
 contact-webmaster | copyright | environment | em | ext | head |
 html-title | img-path | int | item | label | lang |
 language-switch | languages | link | mailto | menu | os |
 out-path | p | page | page-footer | site | section | src-path |
 subhead | target-path | title | translation"/>

<!-- Report error if an element was not matched by the above: -->
<rule context="*">
 <report test="true()">
 Unrecognized element: '<name/>'.
 </report>
</rule>

</pattern>

<diagnostics>
 <diagnostic id="label-element">
 Every 'item' element must contain exactly one 'label' element
 specifying the corresponding top menu label.
 </diagnostic>
</diagnostics>

</schema>
. .

summary examples3.10

XSLT web development154

